Probiotics have already proven beneficial effects in the treatment of several intestinal infections, but the underlying mechanisms how the probiotics can affect responses of porcine IPEC-J2 enterocytes to oxidative stress remained to be elucidated. The immunomodulatory effect of five bacterial strains (Lactobacillus plantarum 2142, Lactobacillus casei Shirota, Bifidobacterium animalis subsp. lactis BB-12, Bacillus amyloliquefaciens CECT 5940 and Enterococcus faecium CECT 4515) on 1 mM peroxide-triggered upregulation of interleukin (IL)-8 and tumor necrosis factor alpha (TNF-α) level was screened by q RT-PCR.
View Article and Find Full Text PDFReactive oxygen species are implicated in cell and tissue damage in a number of diseases including acute and chronic inflammation of the gut. Effects of H(2)O(2) exposure on non-carcinogenic porcine epithelial cell line, IPEC-J2 cells cultured on collagen-coated membrane inserts were monitored based on transepithelial electrical resistance (TER) change, extent of necrotic cell damage, gene expression of inflammatory cytokines IL-8 and TNF-α. Furthermore, the junction proteins claudin-1 and E-cadherin were also investigated by immunohistochemistry.
View Article and Find Full Text PDFProtein kinase C (PKC) isoenzymes are expressed and activated in a cell type-specific manner, and play an essential role in tissue-specific signal transduction. The presence of butyrate at millimolar concentrations in the colon raises the question of whether it affects the expression of PKC isoenzymes in the different cell types of the colonic epithelium. We investigated the protein expression levels of PKCgamma, Thr(514)-phosphorylated PKCgamma (pPKCgamma-Thr(514)), and their subcellular distribution as affected by butyrate in a set of colon cancer cell lines.
View Article and Find Full Text PDFTo investigate the role of reactive oxygen species (ROS) induced by butyrate in tumor cells, we compared HT29R, an HT29-derived human colon cancer cell line refractory to butyrate-induced cell differentiation but highly sensitive to cell death, with the differentiation-positive HT29-12 and HT29-21 cell lines (exhibiting low sensitivity to butyrate-induced cell death), with respect to levels of butyrate-induced free radicals (FRs), ROS, and H(2)O(2). Dose-dependent increase of FRs (as determined by electron spin resonance spectroscopy) and ROS (dichlorofluorescein assay) was induced in HT29R, but not in HT29-12 and HT29-21 cells, where, in contrast to HT29R, a dose-dependent increase of H(2)O(2) release (phenol red assay) was induced by butyrate. The mode of butyrate-induced cell death in HT29R cells was of a mixed type with necrosis predominating, which, however, switched to apoptosis as the major type of cell death in the presence of the drugs 1,5-dihydroxyisoquinoline, resveratrol, or cyclosporine A.
View Article and Find Full Text PDF