Urban areas differ from natural habitats in several environmental features that influence the characteristics of animals living there. For example, birds often start breeding seasonally earlier and fledge fewer offspring per brood in cities than in natural habitats. However, longer breeding seasons in cities may increase the frequency of double-brooding in urban compared with nonurban populations, thus potentially increasing urban birds' annual reproductive output and resulting in lower habitat difference in reproductive success than estimated by studies focusing on first clutches only.
View Article and Find Full Text PDFThe ubiquitous activity of humans is a fundamental feature of urban environments affecting local wildlife in several ways. Testing the influence of human disturbance would ideally need experimental approach, however, in cities, this is challenging at relevant spatial and temporal scales. Thus, to better understand the ecological effects of human activity, we exploited the opportunity that the city-wide lockdowns due to the COVID-19 pandemic provided during the spring of 2020.
View Article and Find Full Text PDFExpertise in science, particularly in animal behaviour, may provide people with the capacity to provide better judgments in contrast to lay people. Here we explore whether experts provide a more objective, accurate and coherent evaluation of a recently reported anecdote on Atlantic puffin (Fratercula arctica) "tool use" (recorded on video) which was published in a major scientific journal but was received with some scepticism. We relied on citizen science and developed a questionnaire to measure whether experts in ethology and ornithology and lay people agree or disagree on (1) the description of the actions that they observe (the bird takes a stick in its beak), (2) the possible goal of the action (nest-building or grooming) and (3) the intentional component of the action (the bird took the stick into its beak in order to scratch itself).
View Article and Find Full Text PDFThe altered ecological and environmental conditions in towns and cities strongly affect demographic traits of urban animal populations, for example avian reproductive success is often reduced. Previous work suggests that this is partly driven by low insect availability during the breeding season, but robust experimental evidence that supports this food limitation hypothesis is not yet available. We tested core predictions of the food limitation hypothesis using a controlled experiment that provided supplementary insect food (nutritionally enhanced mealworms supplied daily to meet 40%-50% of each supplemented brood's food requirements) to great tit nestlings in urban and forest habitats.
View Article and Find Full Text PDF