Publications by authors named "Krisztina Rona-Voros"

Increased mitochondrial mass, commonly termed mitochondrial proliferation, is frequently observed in many human diseases directly or indirectly involving mitochondrial dysfunction. Mitochondrial proliferation is thought to counterbalance a compromised energy metabolism, yet it might also be detrimental through alterations of mitochondrial regulatory functions such as apoptosis, calcium metabolism or oxidative stress. Here, we show that prominent mitochondrial proliferation occurs in Cramping mice, a model of hereditary neuropathy caused by a mutation in the dynein heavy chain gene Dync1h1.

View Article and Find Full Text PDF

Mitochondrial dysfunction is a common hallmark of ageing-related diseases involving neurodegeneration. Huntington's disease (HD) is one of the most common monogenetic forms of neurodegenerative disorders and shares many salient features with the major sporadic disease of neurodegeneration, such as amyotrophic lateral sclerosis (ALS), Alzheimer's disease (AD) and Parkinson's disease (PD). Recent evidence from the study of transgenic and knockout animal models of HD has stimulated new perspectives on mitochondrial dysfunction in HD and possibly other neurodegenerative diseases.

View Article and Find Full Text PDF

The molecular motor dynein and its associated regulatory subunit dynactin have been implicated in several neurodegenerative conditions of the basal ganglia, such as Huntington's disease (HD) and Perry syndrome, an atypical Parkinson-like disease. This pathogenic role has been largely postulated from the existence of mutations in the dynactin subunit p150(Glued). However, dynactin is also able to act independently of dynein, and there is currently no direct evidence linking dynein to basal ganglia degeneration.

View Article and Find Full Text PDF