Publications by authors named "Krisztian Kordas"

MoS is a well-known 2D transition metal dichalcogenide (TMD) with feasibility for energy storage applications due to its eco-friendliness and high electroactive surface area. Electrodes based on MoS are typically made by either immobilizing its multiphase nanocomposites, having binders and conductive fillers, or by directly growing the materials on current collectors. In this work, we follow and optimize this latter approach by applying a hydrothermal route to directly synthesize MoS nanostructures on carbon cloth (MoS@CC) hence enabling binder-free current collector electrodes.

View Article and Find Full Text PDF

MXenes are emerging sensing materials due to their metallic conductivity and rich surface chemistry for analytes; they, however, suffer from poor stability. Incorporation with functional polymers can largely prevent the performance decay and enhance the sensing performance. Herein, we demonstrate a core-shell composite, TiCT@croconaine (poly(1,5-diaminonaphthalene-croconaine), PDAC) prepared by a facile polymerization reaction, suitable for NH detection.

View Article and Find Full Text PDF

Cost-effective and high-performance HS sensors are required for human health and environmental monitoring. 2D transition-metal carbides and nitrides (MXenes) are appealing candidates for gas sensing due to good conductivity and abundant surface functional groups but have been studied primarily for detecting NH and VOCs, with generally positive responses that are not highly selective to the target gases. Here, we report on a negative response of pristine TiCT thin films for HS gas sensing (in contrast to the other tested gases) and further optimization of the sensor performance using a composite of TiCT flakes and conjugated polymers (poly[3,6-diamino-10-methylacridinium chloride--3,6-diaminoacridine-squaraine], PDS-Cl) with polar charged nitrogen.

View Article and Find Full Text PDF

Integrated photodetectors based on transition metal dichalcogenides (TMDs) face the challenge of growing their high-quality crystals directly on chips or transferring them to the desired locations of components by applying multi-step processes. Herein, we show that vertically oriented polycrystalline thin films of MoS and WS grown by sulfurization of Mo and W sputtered on highly doped Si are robust solutions to achieve on-chip photodetectors with a sensitivity of up to 1 mA W and an ultrafast response time in the sub-μs regime by simply probing the device in a vertical arrangement, , parallel to the basal planes of TMDs. These results are two orders of magnitude better than those measured earlier in lateral probing setups having both electrodes on top of vertically aligned polycrystalline TMD films.

View Article and Find Full Text PDF

HS is a toxic and corrosive gas, whose accurate detection at sub-ppm concentrations is of high practical importance in environmental, industrial, and health safety applications. Herein, we propose a chemiresistive sensor device that applies a composite of single-walled carbon nanotubes (SWCNTs) and brominated fullerene (CBr) as a sensing component, which is capable of detecting 50 ppb HS even at room temperature with an excellent response of 1.75% in a selective manner.

View Article and Find Full Text PDF

The continuously growing number of short-life electronics equipment inherently results in a massive amount of problematic waste, which poses risks of environmental pollution, endangers human health, and causes socioeconomic problems. Hence, to mitigate these negative impacts, it is our common interest to substitute conventional materials (polymers and metals) used in electronics devices with their environmentally benign renewable counterparts, wherever possible, while considering the aspects of functionality, manufacturability, and cost. To support such an effort, in this study, we explore the use of biodegradable bioplastics, such as polylactic acid (PLA), its blends with polyhydroxybutyrate (PHB) and composites with pyrolyzed lignin (PL), and multiwalled carbon nanotubes (MWCNTs), in conjunction with processes typical in the fabrication of electronics components, including plasma treatment, dip coating, inkjet and screen printing, as well as hot mixing, extrusion, and molding.

View Article and Find Full Text PDF

Printed piezoresistive strain sensors based on stretchable roll-to-roll screen-printed silver electrodes on polydimethylsiloxane substrates and inkjet-deposited single-wall carbon nanotube micropatterns are demonstrated in this work. With the optimization of surface wetting and inkjet printing parameters, well-defined microscopic line patterns of the nanotubes with a sheet resistance of <100 Ω/□ could be deposited between stretchable Ag electrodes on the plasma-treated substrate. The developed stretchable devices are highly sensitive to tensile strain with a gauge factor of up to 400 and a pressure sensitivity of ∼0.

View Article and Find Full Text PDF

Several different methods are established for the analysis of gases, including optical spectroscopy, photoacoustic spectroscopy as well as colorimetric and resistive sensing, the measurements systems are either too complex or have limited sensitivity. In particular, when the goal is to apply a large number of sensors in networks, it is highly desirable to have devices that are simple, have low cost and energy consumption, yet sensitive and selective to monitor analytes even in traces. Herein, we propose a new type of resistive sensor device based on a composite of single-wall carbon nanotubes and an ion-in-conjugation polymer, poly(1,5-diaminonaphthalene-squaraine), capable of detecting HS and NH in air even at room temperature with a theoretical concentration limit of ∼1 ppb and ∼7 ppb, respectively.

View Article and Find Full Text PDF

Several different methods are established for the analysis of gases, including optical spectroscopy, photoacoustic spectroscopy as well as colorimetric and resistive sensing, the measurements systems are either too complex or have limited sensitivity. In particular, when the goal is to apply a large number of sensors in networks, it is highly desirable to have devices that are simple, have low cost and energy consumption, yet sensitive and selective to monitor analytes even in traces. Herein, we propose a new type of resistive sensor device based on a composite of single-wall carbon nanotubes and an ion-in-conjugation polymer, poly(1,5-diaminonaphthalene-squaraine), capable of detecting HS and NHin air even at room temperature with a theoretical concentration limit of ~1 ppb and ~7 ppb, respectively.

View Article and Find Full Text PDF

There is ever increasing demand for flexible energy storage devices due to the development of wearable electronics and other small electronic devices. The electrode flexibility is best provided by a special set of nanomaterials, but the required methodology typically consists of multiple steps and are designed just for the specific materials. Here, a facile and scalable method of making flexible and mechanically robust planar supercapacitors with interdigital electrode structure made of commercial carbon nanomaterials and silver nanowires is presented.

View Article and Find Full Text PDF

The continuously increasing demand for faster data traffic of our telecommunication devices requires new and better materials and devices that operate at higher frequencies than today. In this work, a porous composite of silica nanoshells and cellulose nanofibers is demonstrated as a suitable candidate of dielectric substrates to be used in future 6G frequency bands. The hollow nanospheres of amorphous SiO with outstanding electromagnetic properties were obtained by a template-assisted Stöber process, in which a thin shell of silica is grown on polystyrene nanospheres first, and then the polymer core is burned off in a subsequent step.

View Article and Find Full Text PDF

Transparent conductive films are used in a wide variety of devices. While solar cell top electrodes as well as tablet and mobile phone screens require high optical transparency and low sheet resistance (>80% and <10 Ω/□) to maximize power efficiency; other, less demanding applications, such as those in capacitive touch panels and antistatic coatings, in which only small currents are involved, can be managed with coatings of moderate conductivity. In this paper, we show that area-selective argon plasma treated polyethylene terephthalate surfaces are suitable for localized deposition of carbon nanotubes from their aqueous dispersions by a simple dip coating and subsequent drying processes.

View Article and Find Full Text PDF

Construction of colloidal nanoparticles (NPs) into advanced functional nanocomposites and hybrids with the predesigned hierarchical structure and high-performance is attractive, especially for natural biological nanomaterials, such as proteins and polysaccharides. Herein, a simple and sustainable approach called interfacial NP complexation (INC) was applied to construct diverse functional (conductive, drug-loaded, or antimicrobial) nanocomposite filaments from oppositely charged colloidal nanocelluloses. By incorporating different additives during the INC process, including multiwalled carbon nanotube, an antitumor drug (doxorubicin hydrochloride), and metal (silver) NPs (Ag NPs), high-performance functional continuous filaments were synthesized, and their potential applications in electronics, drug delivery, and antimicrobial materials were investigated, respectively.

View Article and Find Full Text PDF

Transition metal dichalcogenides (TMDs) have received immense research interest in particular for their outstanding electrochemical and optoelectrical properties. Lately, chemical gas sensor applications of TMDs have been recognized as well owing to the low operating temperatures of devices, which is a great advantage over conventional metal oxide based sensors. In this work, we elaborate on the gas sensing properties of WS and MoS thin films made by simple and straightforward thermal sulfurization of sputter deposited metal films on silicon chips.

View Article and Find Full Text PDF

High-performance electromagnetic interference shielding is becoming vital for the next generation of telecommunication and sensor devices among which portable and wearable applications require highly flexible and lightweight materials having efficient absorption-dominant shielding. Herein, we report on lightweight carbon foam-carbon nanotube/carbon nanofiber nanocomposites that are synthesized in a two-step robust process including a simple carbonization of open-pore structure melamine foams and subsequent growth of carbon nanotubes/nanofibers by chemical vapor deposition. The microstructure of the nanocomposites resembles a 3-dimensional hierarchical network of carbonaceous skeleton surrounded with a tangled web of bamboo-shaped carbon nanotubes and layered graphitic carbon nanofibers.

View Article and Find Full Text PDF

Catalyst size affects the overall kinetics and mechanism of almost all heterogeneous chemical reactions. Since the functional sensing materials in resistive chemical sensors are practically the very same nanomaterials as the catalysts in heterogeneous chemistry, a plausible question arises: Is there any effect of the catalyst size on the sensor properties? Our study attempts to give an insight into the problem by analyzing the response and sensitivity of resistive H₂ sensors based on WO₃ nanowire supported Pt nanoparticles having size of 1.5±0.

View Article and Find Full Text PDF

Unmodified and multi-walled carbon nanotube (MWCNT) modified tetrahedral amorphous carbon (ta-C) films of 15 and 50 nm were investigated as potential in vivo sensor materials for the detection of dopamine (DA) in the presence of the main interferents, ascorbic acid (AA) and uric acid (UA). The MWCNTs were grown directly on ta-C by chemical vapor deposition (designated as ta-C+CNT) and were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, scanning and transmission electron microscopy. Electroanalytical sensitivity and selectivity were determined with cyclic voltammetry.

View Article and Find Full Text PDF

The rapid oxide formation on pristine unprotected copper surfaces limits the direct application of Cu nanomaterials in electronics and sensor assemblies with physical contacts. However, it is not clear whether the growing cuprous (CuO) and cupric oxides (CuO) and the formation of core-shell-like Cu-CuO/CuO nanowires would cause any compromise for non-contact optical measurements, where light absorption and subsequent charge oscillation and separation take place such as those in surface plasmon-assisted and photocatalytic processes, respectively. Therefore, we analyze how the surface potential of hydrothermally synthetized copper nanowires changes as a function of time in ambient conditions using Kelvin probe force microscopy in dark and under light illumination to reveal charge accumulation on the nanowires and on the supporting gold substrate.

View Article and Find Full Text PDF

Herein we report a 3D heterostructure comprising a hierarchical macroporous carbon foam that incorporates mesoporous carbon nanotubes decorated with cobalt oxide nanoparticles as an unique and highly efficient electrode material for the oxygen evolution reaction (OER) in electrocatalytic water splitting. The best performing electrode material showed high stability after 10 h, at constant potential of 1.7 V vs.

View Article and Find Full Text PDF

Hydrogenated titanium dioxide has attracted intensive research interests in pollutant removal applications due to its high photocatalytic activity. Herein, we demonstrate hydrogenated TiO nanofibers (H:TiO NFs) with a core-shell structure prepared by the hydrothermal synthesis and subsequent heat treatment in hydrogen flow. H:TiO NFs has excellent solar light absorption and photogenerated charge formation behavior as confirmed by optical absorbance, photo-Kelvin force probe microscopy and photoinduced charge carrier dynamics analyses.

View Article and Find Full Text PDF

In this work, WS2 nanowire-nanoflake hybrids are synthesized by the sulfurization of hydrothermally grown WO3 nanowires. The influence of temperature on the formation of products is optimized to grow WS2 nanowires covered with nanoflakes. Current-voltage and resistance-temperature measurements carried out on random networks of the nanostructures show nonlinear characteristics and negative temperature coefficient of resistance indicating that the hybrids are of semiconducting nature.

View Article and Find Full Text PDF

The development of scalable synthesis techniques for optically transparent, electrically conductive coatings is in great demand due to the constantly increasing market price and limited resources of indium for indium tin oxide (ITO) materials currently applied in most of the optoelectronic devices. This work pioneers the scalable synthesis of transparent conductive films (TCFs) by exploiting the coffee-ring effect deposition coupled with reactive inkjet printing and subsequent chemical copper plating. Here we report two different promising alternatives to replace ITO, palladium-copper (PdCu) grid patterns and silver-copper (AgCu) fish scale like structures printed on flexible poly(ethylene terephthalate) (PET) substrates, achieving sheet resistance values as low as 8.

View Article and Find Full Text PDF

We synthesized and characterized gold nanostars and their silica-coated derivatives with 7- to 50-nm shell thicknesses as contrast agents for optical imaging. The scattering and absorption coefficients of the nanoparticles (NPs) were estimated by means of collimated transmittance and diffuse reflectance/transmittance analyses. The contrasting properties of the nanostructures were studied in optical coherence tomography glass capillary imaging.

View Article and Find Full Text PDF