Publications by authors named "Krisztian Elekes"

We provided strong proof of concept evidence that somatostatin mediates potent analgesic and anti-inflammatory actions via its receptor subtype 4 (sst) located both at the periphery and the central nervous system. Therefore, sst agonists are promising novel drug candidates for neuropathic pain and neurogenic inflammation, but rational drug design was not possible due to the lack of knowledge about its 3-dimensional structure. We modeled the sst receptor structure, described its agonist binding properties, and characterized the binding of our novel small molecule sst agonists (4-phenetylamino-7H-pyrrolo[2,3-d]pyrimidine derivatives) using an in silico platform.

View Article and Find Full Text PDF

Pituitary Adenylate-Cyclase Activating Polypeptide (PACAP) and Tac1 gene-encoded tachykinins (substance P: SP, neurokinin A: NKA) are expressed in capsaicin-sensitive nerves, but their role in nociception, inflammation and vasoregulation is unclear. Therefore, we investigated the function of these neuropeptides and the NK1 tachykinin receptor (from Tacr1 gene) in the partial sciatic nerve ligation-induced traumatic mononeuropathy model using gene deficient (PACAP(-/-), Tac1(-/-), and Tacr1(-/-)) mice. Mechanonociceptive threshold of the paw was measured with dynamic plantar aesthesiometry, motor coordination with Rota-Rod and cutaneous microcirculation with laser Doppler imaging.

View Article and Find Full Text PDF

We showed that somatostatin (SST) exerts anti-inflammatory and anti-nociceptive effects through somatostatin receptor subtypes 4 and 1 (sst(4)/sst(1)). Since cortistatin (CST) is a structurally similar peptide, we aimed at comparing the sst(1)- and sst(4)-binding and activating abilities, as well as the effects of SST-14 and CST-14 on inflammatory and nociceptive processes. CST-14 concentration-dependently displaced radiolabeled SST-14 binding, induced similar sst(1) and sst(4)-activation with a less potency, and exerted significantly greater inhibitory effect on endotoxin-stimulated interleukin (IL)-1β production of murine peritoneal macrophages.

View Article and Find Full Text PDF

The presence of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors in capsaicin-sensitive peptidergic sensory nerves, inflammatory and immune cells suggest its involvement in inflammation. However, data on its role in different inflammatory processes are contradictory and there is little known about its functions in the airways. Therefore, our aim was to examine intranasal endotoxin-induced subacute airway inflammation in PACAP gene-deficient (PACAP⁻/⁻) and wild-type (PACAP⁺/⁺) mice.

View Article and Find Full Text PDF

Tachykinins encoded by the preprotachykinin A (TAC1) gene such as substance P (SP) and neurokinin A (NKA) are involved in neurogenic inflammatory processes via predominantly neurokinins 1 and 2 (NK1 and NK2) receptor activation, respectively. Endokinins and hemokinins encoded by the TAC4 gene also have remarkable selectivity and potency for the NK1 receptors and might participate in inflammatory cell functions. The aim of the present study was to investigate endotoxin-induced airway inflammation and consequent bronchial hyper-reactivity in TAC1(-/-), NK1(-/-) and also in double knockout (TAC1(-/-)/NK1(-/-)) mice.

View Article and Find Full Text PDF

The aim of this study was to investigate the involvement of transient receptor potential vanilloid 1 (TRPV1) receptors in oral dextran sulfate sodium-induced (DSS) colitis using TRPV1 knockout mice and their wild-type C57BL/6 counterparts. DSS (2% or 5%) was administered orally ad libitum for 7 days; the controls received tap water. Animal weight, stool consistency, and blood content were scored every day to calculate the disease activity index (DAI).

View Article and Find Full Text PDF

Somatostatin released from capsaicin-sensitive sensory nerves of the lung during endotoxin-induced murine pneumonitis inhibits inflammation and hyperresponsiveness, presumably via somatostatin receptor subtype 4 (sst(4)). The goal of the present study was to identify sst(4) receptors in mouse and human lungs and to reveal its inflammation-induced alterations with real-time quantitative PCR, Western blot, and immunohistochemistry. In non-inflamed mouse and human lungs, mRNA expression and immunolocalization of sst(4) are very similar.

View Article and Find Full Text PDF

We have shown that somatostatin released from activated capsaicin-sensitive nociceptive nerve endings during inflammatory processes elicits systemic anti-inflammatory and analgesic effects. With the help of somatostatin receptor subtype 4 gene-deleted mice (sst(4)(-/-)), we provide here several lines of evidence that this receptor has a protective role in a variety of inflammatory disease models; several symptoms are more severe in the sst(4) knockout animals than in their wild-type counterparts. Acute carrageenan-induced paw edema and mechanical hyperalgesia, inflammatory pain in the early phase of adjuvant-evoked chronic arthritis, and oxazolone-induced delayed-type hypersensitivity reaction in the skin are much greater in mice lacking the sst(4) receptor.

View Article and Find Full Text PDF

The inflammatory actions of xylene, an aromatic irritant and sensitizing agent, were described to be predominantly neurogenic in the rat, but the mechanism and the role of the Transient Receptor Potential Vanilloid 1 (TRPV1) capsaicin receptor localized on a subpopulation of sensory nerves has not been elucidated. This paper characterizes the involvement of capsaicin-sensitive afferents and the TRPV1 receptor in nociceptive and acute inflammatory effects of xylene in the mouse. Topical application of xylene on the paw induced a short, intensive nocifensive behaviour characterized by paw liftings and shakings, which was more intensive in Balb/c than in C57Bl/6 mice.

View Article and Find Full Text PDF

Pituitary adenylate cyclase-activating polypeptide-38 (PACAP-38) and its receptors have been shown in the spinal dorsal horn, on capsaicin-sensitive sensory neurons and inflammatory cells. The role of PACAP in central pain transmission is controversial, and no data are available on its function in peripheral nociception. Therefore, the aim of the present study was to analyze the effects of locally or systemically administered PACAP-38 on nocifensive behaviors, inflammatory/neuropathic hyperalgesia and afferent firing.

View Article and Find Full Text PDF

Objective: Along with their classic afferent function (nociception), capsaicin-sensitive transient receptor potential vanilloid 1 (TRPV1) receptor-expressing sensory nerve terminals exert local and systemic efferent activities. Activation of TRPV1 causes sensory neuropeptide release, which modulates the inflammation process. The aim of the present study was to examine the role of this modulatory role of TRPV1 receptor and that of calcitonin gene-related peptide (CGRP) in bleomycin-induced scleroderma, using transgenic mice.

View Article and Find Full Text PDF

Somatostatin released from activated capsaicin-sensitive afferents of the lung inhibits inflammation and related bronchial hyperreactivity presumably via somatostatin 4 receptors (sst(4)). The aim of this study was to examine the effects of TT-232, a heptapeptide sst(4)/sst(1) receptor agonist and J-2156, a high affinity sst(4) receptor-selective peptidomimetic agonist in airway inflammation models. Acute pneumonitis was evoked by intranasal lipopolysaccharide 24 h before measurement.

View Article and Find Full Text PDF

Substance P (SP) and calcitonin gene-related peptide (CGRP) released from capsaicin-sensitive afferents induce neurogenic inflammation via NK(1), NK(2) and CGRP1 receptor activation. This study examines the role of capsaicin-sensitive fibres and sensory neuropeptides in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological and biochemical techniques in mice. Carbachol-induced bronchoconstriction was measured with whole body plethysmography 24 h after intranasal lipopolysaccharide administration.

View Article and Find Full Text PDF

Airways are densely innervated by capsaicin-sensitive sensory neurons expressing transient receptor potential vanilloid 1 (TRPV1) receptors/ion channels, which play an important regulatory role in inflammatory processes via the release of sensory neuropeptides. The aim of the present study was to investigate the role of TRPV1 receptors in endotoxin-induced airway inflammation and consequent bronchial hyperreactivity with functional, morphological, and biochemical techniques using receptor gene-deficient mice. Inflammation was evoked by intranasal administration of Escherichia coli lipopolysaccharide (60 microl, 167 microg/ml) in TRPV1 knockout (TRPV1(-/-)) mice and their wild-type counterparts (TRPV1(+/+)) 24 h before measurement.

View Article and Find Full Text PDF

Somatostatin released from capsaicin-sensitive afferents exerts systemic anti-nociceptive actions, presumably via somatostatin receptor subtype 4 (sst4). In the present study, the antinociceptive effects of a novel somatostatin sst4 receptor selective peptidomimetic compound, J-2156 (1-100 microg/kg i.p.

View Article and Find Full Text PDF

Capsaicin-sensitive, TRPV1 (transient receptor potential vanilloid 1) receptor-expressing primary sensory neurons exert local and systemic efferent effects besides the classical afferent function. The TRPV1 receptor is considered a molecular integrator of various physico-chemical noxious stimuli. In the present study its role was analysed in acute nociceptive tests and chronic neuropathy models by comparison of wild-type (WT) and TRPV1 knockout (KO) mice.

View Article and Find Full Text PDF

The TRPV1 capsaicin receptor is an integrator molecule on primary afferent neurones participating in inflammatory and nociceptive processes. The present paper characterizes the effects of JYL1421 (SC0030), a TRPV1 receptor antagonist, on capsaicin-evoked responses both in vitro and in vivo in the rat. JYL1421 concentration-dependently (0.

View Article and Find Full Text PDF

The TRPV1 capsaicin receptor is a non-selective cation channel localized in the cell membrane of a subset of primary sensory neurons and functions as an integrator molecule in nociceptive/inflammatory processes. The present paper characterizes the effects of SB366791, a novel TRPV1 antagonist, on capsaicin-evoked responses both in vitro and in vivo using rat models. SB366791 (100 and 500 nM) significantly inhibited capsaicin-evoked release of the pro-inflammatory sensory neuropeptide substance P from isolated tracheae, while it did not influence electrically induced neuropeptide release.

View Article and Find Full Text PDF

The transient receptor potential vanilloid 1 (TRPV1) receptor is a nonselective cation channel localized on a subset of primary sensory neurons and can be activated by a wide range of stimuli. The present study investigated the role of this receptor in chronic arthritis evoked by complete Freund's adjuvant (CFA) using TRPV1 receptor gene-deleted (TRPV1-/-) mice and wild-type counterparts (TRPV1+/+). In TRPV1+/+ mice, CFA injected intraplantarly into the left hindpaw and the root of the tail induced swelling of the injected and contralateral paws up to 130 and 28%, respectively, measured by plethysmometry throughout 18 days.

View Article and Find Full Text PDF

Somatostatin released from capsaicin-sensitive sensory nerves exerts systemic anti-inflammatory and antinociceptive actions. TT-232 is a stable, peripherally acting heptapeptide (D-Phe-Cys-Tyr-D-Trp-Lys-Cys-Thr-NH2) somatostatin analogue with highest binding affinity for somatostatin sst4 receptors. It has been shown to inhibit acute and chronic inflammatory responses and sensory neuropeptide release from capsaicin-sensitive nociceptors.

View Article and Find Full Text PDF