It is generally understood that the main role of the cerebellum is in movement planning and coordination, but neuroimaging has led to striking findings of its involvement in many aspects of cognitive processing. Mental visualization is such a cognitive process, extensively involved in learning and memory, artistic and inventive creativity, etc. Here, our aim was to conduct a multidimensional study of cerebellar involvement in the non-motor cognitive tasks.
View Article and Find Full Text PDFIS&T Int Symp Electron Imaging
January 2021
We describe the development of a multipurpose haptic stimulus delivery and spatiomotor recording system with tactile map-overlays for electronic processing This innovative multipurpose spatiomotor capture system will serve a wide range of functions in the training and behavioral assessment of spatial memory and precise motor control for blindness rehabilitation, both for STEM learning and for navigation training and map reading. Capacitive coupling through the map-overlays to the touch-tablet screen below them allows precise recording i) of hand movements during haptic exploration of tactile raised-line images on one tablet and ii) of line-drawing trajectories on the other, for analysis of navigational errors, speed, time elapsed, etc. Thus, this system will provide for the first time in an integrated and automated manner quantitative assessments of the whole 'perception-cognition-action' loop - from non-visual exploration strategies, spatial memory, precise spatiomotor control and coordination, drawing performance, and navigation capabilities, as well as of haptic and movement planning and control.
View Article and Find Full Text PDFBinocular eye movements form a finely tuned system that requires accurate coordination of the oculomotor dynamics of the brainstem control nuclei when tracking the fine binocular disparities required for 3D vision. They are particularly susceptible to disruption by brain injury and other neural dysfunctions. Here, we report functional magnetic resonance imaging activation of the brainstem oculomotor control nuclei by binocular saccadic and vergence eye movements, and significant reductions in their response amplitudes in mild or diffuse traumatic brain injury (dTBI).
View Article and Find Full Text PDFPurpose: Traumatic brain injury involving loss of consciousness has focal effects in the human brainstem, suggesting that it may have particular consequences for eye movement control. This hypothesis was investigated by measurements of vergence eye movement parameters.
Methods: Disparity vergence eye movements were measured for a population of 123 normally sighted individuals, 26 of whom had suffered diffuse traumatic brain injury (dTBI) in the past, while the remainder served as controls.