Manual review is an integral part of any study. As the cost of data generation continues to decrease, the rapid rise in large-scale multi-omic studies calls for a modular, flexible framework to perform what is currently a tedious, error-prone process. We developed , a Python-based package built with Plotly Dash that creates interactive, highly customizable dashboards for reviewing and annotating data.
View Article and Find Full Text PDFThe clustering of data into physically meaningful subsets often requires assumptions regarding the number, size, or shape of the subgroups. Here, we present a new method, simultaneous coherent structure coloring (sCSC), which accomplishes the task of unsupervised clustering without a priori guidance regarding the underlying structure of the data. sCSC performs a sequence of binary splittings on the dataset such that the most dissimilar data points are required to be in separate clusters.
View Article and Find Full Text PDFWe present a method for identifying the coherent structures associated with individual Lagrangian flow trajectories even where only sparse particle trajectory data are available. The method, based on techniques in spectral graph theory, uses the Coherent Structure Coloring vector and associated eigenvectors to analyze the distance in higher-dimensional eigenspace between a selected reference trajectory and other tracer trajectories in the flow. By analyzing this distance metric in a hierarchical clustering, the coherent structure of which the reference particle is a member can be identified.
View Article and Find Full Text PDF