Background: The Lyme disease spirochete Borrelia burgdorferi dramatically upregulates outer surface protein C (OspC) in response to fresh bloodmeal during transmission from the tick vector to a mammal, and abundantly produces the antigen during early infection. As OspC is an effective immune target, to evade the immune system B. burgdorferi downregulates the antigen once the anti-OspC humoral response has developed, suggesting an important role for OspC during early infection.
View Article and Find Full Text PDFDuring cycling between the tick vector and a mammal, the Lyme disease spirochaete Borrelia burgdorferi must coordinate expression of outer-surface proteins (Osps) A and B to quickly respond to environmental changes. The pathogen abundantly produces OspA/B in the tick, but represses their expression during mammalian infection. This paper reports a regulatory structure, consisting of two sequences flanking the ospAB promoter, that is required for enhancing ospA expression in B.
View Article and Find Full Text PDFMicrobiology (Reading)
November 2008
The surface lipoproteins of the Lyme disease spirochaete Borrelia burgdorferi directly interact with tissue microenvironments during mammalian infection, and thus potentially affect various aspects of infection. To investigate the influence of surface antigen synthesis on infectious behaviour, B. burgdorferi was modified to constitutively produce the well-characterized surface lipoproteins OspA and invariant VlsE.
View Article and Find Full Text PDFAs an extracellular bacterium, the Lyme disease spirochete Borrelia burgdorferi resides primarily in the extracellular matrix and connective tissues and between host cells during mammalian infection, where decorin and glycosaminoglycans are abundantly found, so its interactions with these host ligands potentially affect various aspects of infection. Decorin-binding proteins (Dbps) A and B, encoded by a 2-gene operon, are outer surface lipoproteins with similar molecular weights and share approximately 40% identity, and both bind decorin and glycosaminoglycans. To investigate how DbpA and DbpB contribute differently to the overall virulence of B.
View Article and Find Full Text PDFThe Lyme disease spirochete Borrelia burgdorferi must repress expression of outer surface protein C (OspC) to effectively evade specific humoral immunity and to establish persistent infection. This ability largely relies upon a regulatory element, the only operator that has been reported in spirochetal bacteria. Immediately upstream of the ospC promoter, two sets of inverted repeats (IRs) constitute small and large palindromes, in which the right IR of the large palindrome contains the left IR of the small one, and may collectively function as the ospC operator.
View Article and Find Full Text PDFTo initiate infection, a microbial pathogen must be able to evade innate immunity. Here we show that the Lyme disease spirochete Borrelia burgdorferi depends on its surface lipoproteins for protection against innate defences. The deficiency for OspC, an abundantly expressed surface lipoprotein during early infection, led to quick clearance of B.
View Article and Find Full Text PDFBoth decorin-binding proteins (DbpA and DbpB) of the Lyme disease spirochete Borrelia burgdorferi bind decorin and glycosaminoglycans, two important building blocks of proteoglycans that are abundantly found in the extracellular matrix (ECM) and connective tissues as well as on cell surfaces of mammals. As an extracellular pathogen, B. burgdorferi resides primarily in the ECM and connective tissues and between host cells during mammalian infection.
View Article and Find Full Text PDFTight regulation of surface antigenic expression is crucial for the pathogenic strategy of the Lyme disease spirochete, Borrelia burgdorferi. Here, we report the influence of increasing expression of decorin-binding protein A (DbpA), one of the most investigated spirochetal surface adhesins, on the 50% infectious dose (ID(50)), dissemination, tissue colonization, pathogenicity, and persistence of B. burgdorferi in the murine host.
View Article and Find Full Text PDFTimely expression of the outer surface protein C (OspC) is crucial for the pathogenic strategy of the Lyme disease spirochete Borrelia burgdorferi. The pathogen abundantly expresses OspC during initial infection when the antigen is required, but downregulates when its presence poses a threat to the spirochetes once the anti-OspC humoral response has developed. Here, we show that a large palindromic sequence immediately upstream of the ospC promoter is essential for the repression of ospC expression during murine infection and for the ability of B.
View Article and Find Full Text PDFThe Lyme disease spirochete Borrelia burgdorferi expresses a broad array of adhesive molecules, including the decorin-binding proteins A and B (DbpA and DbpB), which are believed to play important roles in mammalian infection. The dbpBA locus was deleted; resulting mutants were able to infect both immunodeficient and immunocompetent mice, indicating that neither DbpA nor DbpB is essential for the infection of mammals, although the DbpAB deficiency may significantly attenuate infectivity potential.
View Article and Find Full Text PDFThe Lyme disease spirochete Borrelia burgdorferi reduces the expression of outer surface protein C (OspC) in response to the development of an anti-OspC humoral response, leading to the hypothesis that the ability to repress OspC expression is critical for the pathogen to proceed to chronic infection. B. burgdorferi was genetically modified to constitutively express OspC by introducing an extra ospC copy fused with the borrelial flagellar gene (flaB) promoter.
View Article and Find Full Text PDFBorrelia burgdorferi, the Lyme disease spirochete, has a genome comprised of a linear chromosome and up to 21 plasmids. Loss of plasmids is associated with decreased infectivity and pathogenicity. Sixteen transformants were generated by transforming the noninfectious clone 5A13 with the recombinant plasmid pBBE22.
View Article and Find Full Text PDF