Background: Plasma amyloid‐beta (Aβ) 42/40 ratio and phosphorylated tau 181 (pTau181) are promising blood biomarkers for AD. Compared to heterogenous clinical phenotypes, they are more objective and proximal to the pathological hallmarks of Aβ plaques and tau tangles. Biomarker‐guided clustering using Aβ42/40 and pTau181 can potentially establish subpopulations that share similar mechanisms of AD and treatment responses.
View Article and Find Full Text PDFIntroduction: Recently, the O-6-methylguanine-DNA methyltransferase (MGMT) locus was proposed as influencing the risk of Alzheimer's disease (AD) in women who did not carry the apolipoprotein E ε4 allele. We examined an Amish founder population for any influence of genetic variation in and around the MGMT locus on the risk for dementia.
Methods: Genetic association was performed for single nucleotide polymorphisms (SNPs) surrounding the MGMT locus.
Introduction: Alzheimer disease (AD) remains a debilitating condition with limited treatments and additional therapeutic targets needed. Identifying AD protective genetic loci may identify new targets and accelerate identification of therapeutic treatments. We examined a founder population to identify loci associated with cognitive preservation into advanced age.
View Article and Find Full Text PDFIntroduction: Studies of cognitive impairment (CI) in Amish communities have identified sibships containing CI and cognitively unimpaired (CU) individuals. We hypothesize that CU individuals may carry protective alleles delaying age at onset (AAO) of CI.
Methods: A total of 1522 individuals screened for CI were genotyped.
Pancreatic ductal adenocarcinomas (PDAC) are deadly on account of the delay in diagnosis and dearth of effective treatment options for advanced disease. The insurmountable hurdle of targeting oncogene KRAS, the most prevalent genetic mutation in PDAC, has delayed the availability of targeted therapy for PDAC patients. An alternate approach is to target other tumour-exclusive effector proteins important in RAS signalling.
View Article and Find Full Text PDFPurpose: Recent data suggest that intrinsic subtype and immune cell infiltration may predict response to trastuzumab-based therapy. We studied the interaction between these factors, changes in immune signatures following brief exposure to trastuzumab, and achievement of pathologic complete response (pCR) to subsequent preoperative trastuzumab and chemotherapy in HER2-positive breast cancer.
Experimental Design: In patients enrolled on two multicenter trials (03-311 and 211B), tumor core biopsies were obtained at baseline and after brief exposure to single-agent trastuzumab or nab-paclitaxel.
To best define biomarkers of response, and to shed insight on mechanism of action of certain clinically important agents for early breast cancer, we used a brief-exposure paradigm in the preoperative setting to study transcriptional changes in patient tumors that occur with one dose of therapy prior to combination chemotherapy. Tumor biopsies from breast cancer patients enrolled in two preoperative clinical trials were obtained at baseline and after one dose of bevacizumab (HER2-negative), trastuzumab (HER2-positive) or nab-paclitaxel, followed by treatment with combination chemo-biologic therapy. RNA-Sequencing based PAM50 subtyping at baseline of 46 HER2-negative patients revealed a strong association between the basal-like subtype and pathologic complete response (pCR) to chemotherapy plus bevacizumab (p ≤ 0.
View Article and Find Full Text PDFBreast cancer is a major health problem affecting millions of women worldwide. Over 200,000 new cases are diagnosed annually in the USA, with approximately 40,000 of these cases resulting in death. HER2-positive (HER2+) breast tumors, representing 20-30 % of early-stage breast cancer diagnoses, are characterized by the amplification of the HER2 gene.
View Article and Find Full Text PDFUnlabelled: FAM83B (family with sequence similarity 83, member B) was recently identified as a novel oncogene involved in activating CRAF/MAPK signaling and driving epithelial cell transformation. FAM83B is one of eight members of a protein family (FAM83) characterized by a highly conserved domain of unknown function (DUF1669), which is necessary and sufficient to drive transformation. Here, it is demonstrated that additional FAM83 members also exhibit oncogenic properties and have significantly elevated levels of expression in multiple human tumor types using a TissueScan Cancer Survey Panel PCR array and database mining.
View Article and Find Full Text PDFTherapies targeting MAPK and AKT/mTOR signaling are currently being evaluated in clinical trials for several tumor types. However, recent studies suggest that these therapies may be limited due to acquired cancer cell resistance and a small therapeutic index between normal and cancer cells. The identification of novel proteins that are involved in MAPK or AKT/mTOR signaling and differentially expressed between normal and cancer cells will provide mechanistically distinct therapeutic targets with the potential to inhibit these key cancer-associated pathways.
View Article and Find Full Text PDFAberrant regulation of growth signaling is a hallmark of cancer development that often occurs through the constitutive activation of growth factor receptors or their downstream effectors. Using validation-based insertional mutagenesis (VBIM), we identified family with sequence similarity 83, member B (FAM83B), based on its ability to substitute for RAS in the transformation of immortalized human mammary epithelial cells (HMECs). We found that FAM83B coprecipitated with a downstream effector of RAS, CRAF.
View Article and Find Full Text PDFBackground: Grb2-associated binding (Gab) adapter proteins play major roles in coordinating signaling downstream of hematopoietic cytokine receptors. In hematopoietic cells, Gab2 can modulate phosphatidylinositol-3 kinase and mitogen associated protein kinase activities and regulate the long-term multilineage competitive repopulating activity of hematopoietic stem cells (HSCs). Gab2 may also act in a linear pathway upstream or downstream of signal transducer and activator of transcription-5 (STAT5), a major positive regulator of HSC function.
View Article and Find Full Text PDFPhosphorylated signal transducer and activator of transcription 5 (STAT5) is a biomarker and potential molecular target for hematologic malignancies. We have shown previously that lethal myeloproliferative disease (MPD) in mice mediated by persistently activated STAT5 (STAT5a(S711F)) requires the N-domain, but the mechanism was not defined. We now demonstrate by retrovirally complementing STAT5ab(null/null) primary mast cells that relative to wild-type STAT5a, STAT5a lacking the N-domain (STAT5aDeltaN) ineffectively protected against cytokine withdrawal-induced cell death.
View Article and Find Full Text PDF