Adipocyte
December 2024
White adipose tissue (WAT) is a dynamic organ capable of remodelling in response to metabolic state. For example, in response to stimuli such as cold exposure, WAT can develop inducible brown adipocytes ('browning') capable of non-shivering thermogenesis, through concurrent changes to mitochondrial content and function. This is aided by increased neurite outgrowth and angiogenesis across the tissue, providing the needed neurovascular supply for uncoupling protein 1 activation.
View Article and Find Full Text PDFJ Gerontol A Biol Sci Med Sci
November 2024
The Midwest Aging Consortium (MAC) has emerged as a critical collaborative initiative aimed at advancing our understanding of aging and developing strategies to combat the rising prevalence of age-related diseases. Founded in 2019, MAC brings together researchers from various disciplines and institutions across the Midwestern United States to foster interdisciplinary geroscience research. This report summarizes the highlights of the Fourth Annual Symposium of MAC, which was held at Iowa State University in May 2023.
View Article and Find Full Text PDFThere are key differences between the central nervous system (CNS) (brain and spinal cord) and peripheral nervous system (PNS), such as glial cell types, whether there is protection by the blood-brain barrier, modes of synaptic connections, etc. However, there are many more similarities between these two arms of the nervous system, including neuronal structure and function, neuroimmune and neurovascular interactions, and, perhaps most essentially, the balance between neural plasticity (including processes like neuron survival, neurite outgrowth, synapse formation, gliogenesis) and neurodegeneration (neuronal death, peripheral neuropathies like axonopathy and demyelination). This article brings together current research evidence on shared mechanisms of nervous system health and disease between the CNS and PNS, particularly with metabolic diseases like obesity and diabetes.
View Article and Find Full Text PDFIn April 2023, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), in partnership with the National Institute of Child Health and Human Development, the National Institute on Aging, and the Office of Behavioral and Social Sciences Research, hosted a 2-day online workshop to discuss neural plasticity in energy homeostasis and obesity. The goal was to provide a broad view of current knowledge while identifying research questions and challenges regarding neural systems that control food intake and energy balance. This review includes highlights from the meeting and is intended both to introduce unfamiliar audiences with concepts central to energy homeostasis, feeding, and obesity and to highlight up-and-coming research in these areas that may be of special interest to those with a background in these fields.
View Article and Find Full Text PDFBoth brown and white adipose tissues (BAT/WAT) are innervated by the peripheral nervous system, including efferent sympathetic nerves that communicate from the brain/central nervous system out to the tissue, and afferent sensory nerves that communicate from the tissue back to the brain and locally release neuropeptides to the tissue upon stimulation. This bidirectional neural communication is important for energy balance and metabolic control, as well as maintaining adipose tissue health through processes like browning (development of metabolically healthy brown adipocytes in WAT), thermogenesis, lipolysis, and adipogenesis. Decades of sensory nerve denervation studies have demonstrated the particular importance of adipose sensory nerves for brown adipose tissue and WAT functions, but far less is known about the tissue's sensory innervation compared to the better-studied sympathetic nerves and their neurotransmitter norepinephrine.
View Article and Find Full Text PDFWe assessed aging hallmarks in skin, muscle, and adipose in the genetically diverse HET3 mouse, and generated a broad dataset comparing these to individual animal diagnostic SNPs from the 4 founding inbred strains of the HET3 line. For middle- and old-aged HET3 mice, we provided running wheel exercise to ensure our observations were not purely representative of sedentary animals, but age-related phenotypes were not improved with running wheel activity. Adipose tissue fibrosis, peripheral neuropathy, and loss of neuromuscular junction integrity were consistent phenotypes in older-aged HET3 mice regardless of physical activity, but aspects of these phenotypes were moderated by the SNP% contributions of the founding strains for the HET3 line.
View Article and Find Full Text PDFHomeostatic regulation of adipose tissue is critical for the maintenance of energy balance and whole-body metabolism. The peripheral nervous system provides bidirectional neural communication between the brain and adipose tissue, thereby providing homeostatic control. Most research on adipose innervation and nerve functions has been limited to the sympathetic nerves and their neurotransmitter norepinephrine.
View Article and Find Full Text PDFTrends Endocrinol Metab
October 2023
The peripheral nervous system (PNS) relays information between organs and tissues and the brain and spine to maintain homeostasis, regulate tissue functions, and respond to interoceptive and exteroceptive signals. Glial cells perform support roles to maintain nerve function, plasticity, and survival. The glia of the central nervous system (CNS) are well characterized, but PNS glia (PNSG) populations, particularly tissue-specific subtypes, are underexplored.
View Article and Find Full Text PDFThe sympathetic nervous system (SNS) is a crucial arm of the peripheral nervous system (PNS) and includes catecholaminergic neurons that release norepinephrine (NE) onto numerous effector tissues and organs in the body. SNS innervation of both white (WAT) and brown adipose tissue (BAT) is clearly essential for proper tissue function and metabolic control, as decades of surgical, chemical, and genetic denervation studies have demonstrated. Despite our vast knowledge about adipose sympathetic innervation, especially in the context of cold-stimulated browning and thermogenesis that are under SNS control, newer data now provide a nuanced view of the SNS supply to adipose, including its regulation by local neuroimmune cells and neurotrophic factors, the co-release of modulatory neuropeptides along with NE, the importance of local SNS drive to adipose versus systemic increases in circulating catecholamines, and the long-overlooked interplay between adipose sympathetic and sensory nerves.
View Article and Find Full Text PDFPeripheral neuropathy, which can include axonal degeneration and/or demyelination, impacts adipose tissues with obesity, diabetes, and aging. However, the presence of demyelinating neuropathy had not yet been explored in adipose. Both demyelinating neuropathies and axonopathies implicate Schwann cells (SCs), a glial support cell that myelinates axons and contributes to nerve regeneration after injury.
View Article and Find Full Text PDFNeural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells.
View Article and Find Full Text PDFStroke was the 2nd leading cause of death and a major cause of morbidity. Unfortunately, there are limited means to promote neurological recovery post-stroke, but research has unearthed potential targets for therapies to encourage post-stroke neurogenesis and neuroplasticity. The occurrence of neurogenesis in adult mammalian brains, including humans, was not widely accepted until the 1990s.
View Article and Find Full Text PDFPeripheral nerves allow a bidirectional communication between brain and adipose tissues, and many studies have clearly demonstrated that a loss of the adipose nerve supply results in tissue dysfunction and metabolic dysregulation. Neuroimmune cells closely associate with nerves in many tissues, including subcutaneous white adipose tissue (scWAT). However, in scWAT, their functions beyond degrading norepinephrine in an obese state remain largely unexplored.
View Article and Find Full Text PDFA telomerase reverse transcriptase (Tert) lineage-tracing mouse line was developed to investigate the behavior and fate of adult tissue stem cells, by crossing the 'Tet-On' system oTet-Cre mouse with a novel reverse tetracycline transactivator (rtTA) transgene linked to the Tert promoter, which we have demonstrated marks a novel population of adult brain stem cells. Here, administration of the tetracycline derivative doxycycline to mTert-rtTA::oTet-Cre mice will indelibly mark a population of cells that express a 4.4 kb fragment of the promoter region of the gene Tert.
View Article and Find Full Text PDFIncreasing the mass and/or activity of brown adipose tissue (BAT) is one promising avenue for treating obesity and related metabolic conditions, given that BAT has a high potential for energy expenditure and is capable of improving glucose and lipid homeostasis. BAT occurs either in discrete "classical" depots, or interspersed in white adipose tissue (WAT), termed "inducible/recruitable" BAT, or 'beige/brite' adipocytes. We and others have demonstrated that bone morphogenetic protein 7 (BMP7) induces brown adipogenesis in committed and uncommitted progenitor cells, resulting in increased energy expenditure and reduced weight gain in mice.
View Article and Find Full Text PDFIn adult tissues such as adipose tissue, post-mitotic cells like adipocytes can be replaced by differentiation of a population of tissue-resident stem cells. Expression of mouse telomerase reverse transcriptase (mTert) is a hallmark of stem cell populations, and previous efforts to identify tissue-resident adult stem cells by measuring mTert expression have increased our understanding of stem cell biology significantly. Here, we used a doxycycline-inducible mouse model to perform longitudinal, live-animal lineage-tracing of mTert-expressing cells for more than 1 year.
View Article and Find Full Text PDFHere we provide a clearing-free protocol for processing intact, whole mount subcutaneous white adipose tissue (scWAT) for immunofluorescence as an alternative to current clearing-based approaches. We use a combination of Z-depth reduction and autofluorescence quenching techniques to fluorescently label, image, and quantify adipose tissue innervation effectively throughout intact mouse tissues without the need for optical clearing or light sheet microscopy. This protocol has been optimized and validated for adipose neurovascular labeling.
View Article and Find Full Text PDFLittle is known about the diversity and function of adipose tissue nerves, due in part to the inability to effectively visualize the tissue's diverse nerve subtypes and the patterns of innervation across an intact depot. The tools to image and quantify adipose tissue innervation are currently limited. Here, we present a method of tissue processing that decreases tissue thickness in the z-axis while leaving cells intact for subsequent immunostaining.
View Article and Find Full Text PDFThe current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure.
View Article and Find Full Text PDFBackground: Innervation of adipose tissue is essential for the proper function of this critical metabolic organ. Numerous surgical and chemical denervation studies have demonstrated how maintenance of brain-adipose communication through both sympathetic efferent and sensory afferent nerves helps regulate adipocyte size, cell number, lipolysis, and 'browning' of white adipose tissue. Neurotrophic factors are growth factors that promote neuron survival, regeneration, and plasticity, including neurite outgrowth and synapse formation.
View Article and Find Full Text PDF