Publications by authors named "Kristy K Michael Miller"

Article Synopsis
  • DHEA levels have a controversial association with breast cancer risk, especially in postmenopausal women, leading to a study of its impact on estrogen receptors and gene activity.
  • DHEA and its metabolites were found to activate estrogen receptor α (ERα) and estrogen receptor β (ERβ) in different cell types, influencing gene transcription and cell growth.
  • The study showed that DHEA metabolites can compete with estrogen for receptor binding and stimulate breast cancer cell proliferation, indicating their direct role in modulating estrogen-related gene expression.
View Article and Find Full Text PDF

Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor alpha (PPARalpha) in vivo but does not ligand-activate PPARalpha in transient transfection experiments. We demonstrate that DHEA regulates PPARalpha action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARalpha and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene.

View Article and Find Full Text PDF

Dehydroepiandrosterone has been thought to have physiological functions other than as an androgen precursor. The previous studies performed have demonstrated a number of biological effects in rodents, such as amelioration of disease in diabetic, chemical carcinogenesis, and obesity models. To date, activation of the peroxisome proliferators activated receptor alpha, pregnane X receptor, and estrogen receptor by DHEA and its metabolites have been demonstrated.

View Article and Find Full Text PDF

Current research on dehydroepiandrosterone (DHEA) is limited due to lack of radiolabeled metabolites. We utilized pig liver microsomal (PLM) fractions to prepare [(3)H]-labeled 7 alpha-hydroxy-DHEA (7 alpha-OH-DHEA), 7 beta-hydroxy-DHEA (7 beta-OH-DHEA), and 7-oxo-DHEA substrates from 50 microM [1,2,6,7-(3)H]DHEA (specific radioactivity 60-80 mCi/mmol). The metabolites were separated by preparative thin-layer chromatography (TLC) using ethyl acetate:hexane:glacial acetic acid (18:8:3 v:v:v) as the mobile phase, extracted with ethyl acetate, and dried under a stream of nitrogen.

View Article and Find Full Text PDF

This article is an invited report of a symposium sponsored by the Division for Drug Metabolism of the American Society for Pharmacology and Experimental Therapeutics held at Experimental Biology 2003 in San Diego, California, April 11-15, 2003. Several members of the cytochrome P450 (P450) superfamily are induced after exposure to a variety of chemical signals, and we have gained considerable mechanistic insight into these processes over the past four decades. In addition, the expression of many P450s is suppressed in response to various endogenous and exogenous chemicals; however, relatively little is known about the molecular mechanisms involved.

View Article and Find Full Text PDF

The purpose of this study was to quantify the oxidative metabolism of dehydroepiandrosterone (3beta-hydroxy-androst-5-ene-17-one; DHEA) by liver microsomal fractions from various species and identify the cytochrome P450 (P450) enzymes responsible for production of individual hydroxylated DHEA metabolites. A gas chromatography-mass spectrometry method was developed for identification and quantification of DHEA metabolites. 7alpha-Hydroxy-DHEA was the major oxidative metabolite formed by rat (4.

View Article and Find Full Text PDF