Micromachines (Basel)
August 2024
The optically gated transistor (OGT) has been previously demonstrated as a viable selector device for memristor devices, and may enable optical addressing within cross-point arrays. The OGT current-voltage response is similar to a MOSFET device, with light activating the gate instead of voltage. The OGT also provides a naturally built-in compliance current for a series resistive memory element, determined by the incident light intensity on the gate, thus keeping the integrated periphery circuitry size and complexity to a minimum for a memory array.
View Article and Find Full Text PDFIn this work, we build and test three memristor-based true random number generator (TRNG) circuits: two previously presented in the literature and one which is our own design. The functionality of each circuit is assessed using the National Institute of Standards and Technology (NIST) Statistical Test Suite (STS). The TRNG circuits were built using commercially available off-the-shelf parts, including the memristor.
View Article and Find Full Text PDFElectrical performance of self-directed channel (SDC) ion-conducting memristors which use Ag and Cu as the mobile ion source are compared over the temperature range of 6 K to 300 K. The Cu-based SDC memristors operate at temperatures as low as 6 K, whereas Ag-based SDC memristors are damaged if operated below 125 K. It is also observed that Cu reversibly diffuses into the active GeSe layer during normal device shelf-life, thus changing the state of a Cu-based memristor over time.
View Article and Find Full Text PDFIon-conducting memristors comprised of the layered materials GeSe/SnSe/Ag are promising candidates for neuromorphic computing applications. Here, the spike-timing dependent plasticity (STDP) application is demonstrated for the first time with a single memristor type operating as a synapse over a timescale of 10 orders of magnitude, from nanoseconds through seconds. This large dynamic range allows the memristors to be useful in applications that require slow biological times, as well as fast times such as needed in neuromorphic computing, thus allowing multiple functions in one design for one memristor type-a "one size fits all" approach.
View Article and Find Full Text PDFWe report the theoretical prediction of single and paired electron self-trapping in Ge(2)Se(3). In finite atomic cluster, density functional calculations, we show that excess single electrons in Ge(2)Se(3) are strongly localized around single germanium dimers. We also find that two electrons prefer to trap around the same germanium dimer, rupturing a neighboring Ge-Se bond.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2011
We present a theoretical study of the nuclear quadrupole interaction, ν(Q), of (75)As in crystalline and amorphous materials containing sulfur and selenium, and compare them with experiment. We studied a combination of hydrogen-terminated molecular clusters and periodic cells at various levels of quantum chemical theory. The results show clearly that the standard density functional theory (DFT) approximations, LDA and GGA, underestimate the nuclear quadrupole (NQR) interaction systematically, while Hartree-Fock theory overestimates it to an even greater degree.
View Article and Find Full Text PDFThe pulsed electron paramagnetic resonance (EPR) methods of electron spin echo envelope modulation (ESEEM) and electron spin echo-electron nuclear double resonance (ESE-ENDOR) are used to investigate the structure of the Photosystem II oxygen-evolving complex (OEC), including the paramagnetic manganese cluster and its immediate surroundings. Recent unpublished results from the pulsed EPR laboratory at UC-Davis are discussed, along with aspects of recent publications, with a focus on substrate and cofactor interactions. New data on the proximity of exchangeable deuterons around the Mn cluster poised in the S(0)-state are presented and interpreted.
View Article and Find Full Text PDFThe parallel-mode electron paramagnetic resonance (EPR) spectrum of the S(1) state of the oxygen-evolving complex (OEC) shows a multiline signal centered around g=12, indicating an integer spin system. The series of [Mn(2)(2-OHsalpn)(2)] complexes were structurally characterized in four oxidation levels (Mn(II)(2), Mn(II)Mn(III), Mn(III)(2), and Mn(III)Mn(IV)). By using bulk electrolysis, the [Mn(III)Mn(IV)(2-OHsalpn)(2)(OH)] is oxidized to a species that contains Mn(IV) oxidation state as detected by X-ray absorption near edge spectroscopy (XANES) and that can be formulated as Mn(IV)(4) tetramer.
View Article and Find Full Text PDFAspartate 170 of the D1 polypeptide provides part of the high-affinity binding site for the first Mn(II) ion that is photooxidized during the light-driven assembly of the (Mn)(4) cluster in photosystem II [Campbell, K. A., Force, D.
View Article and Find Full Text PDF