Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene.
View Article and Find Full Text PDFEndogenous 5-methylcytosine ((Me)C) residues are found at all CG dinucleotides of the p53 tumor suppressor gene, including the mutational 'hotspots' for smoking induced lung cancer. (Me)C enhances the reactivity of its base paired guanine towards carcinogenic diolepoxide metabolites of polycyclic aromatic hydrocarbons (PAH) present in cigarette smoke. In the present study, the structural basis for these effects was investigated using a series of unnatural nucleoside analogs and a representative PAH diolepoxide, benzo[a]pyrene diolepoxide (BPDE).
View Article and Find Full Text PDF3,4-Epoxy-1-butene (EB) is generated by cytochrome P450-mediated epoxidation of 1,3-butadiene (BD), an important environmental and industrial chemical classified as a probable human carcinogen. The ability of EB to induce point mutations at GC and AT base pairs has been attributed to its reactions with DNA to form covalent nucleobase adducts. Guanine alkylation is preferred at the endocyclic N7 nitrogen, while adenine can be modified at the N1-, N3-, N7-, and the N6 positions.
View Article and Find Full Text PDF