Proc SPIE Int Soc Opt Eng
August 2010
We describe a microfluidic device capable of trapping, isolating, and lysing individual cells in parallel using dielectrophoretic forces and a system of PDMS channels and valves. The device consists of a glass substrate patterned with electrodes and two PDMS layers comprising of the microfluidic channels and valve control channels. Individual cells are captured by positive dielectrophoresis using the microfabricated electrode pairs.
View Article and Find Full Text PDFA method for fabricating DNA polymer brush arrays using photolithography and plasma etching followed by solid-phase enzymatic DNA amplification is reported. After attaching oligonucleotide primers to the surface of a glass coverslip, a thin layer of photoresist is spin-coated on the glass and patterned via photolithography to generate an array of posts in the resist. An oxygen-based plasma is then used to destroy the exposed oligonucleotide primers.
View Article and Find Full Text PDFWe describe a method for multiplexed analysis of proteins using fluorescently encoded microbeads. The sensitivity of our method is comparable to the sensitivity obtained by enzyme-linked immunosorbent assay while only 5 µl sample volumes are needed. Streptavidin-coated, 1 µm beads are encoded with a combination of fluorophores at different intensity levels.
View Article and Find Full Text PDFWe report the development of a microfabricated electrophoretic device for assembling high-density arrays of antibody-conjugated microbeads for chip-based protein detection. The device consists of a flow cell formed between a gold-coated silicon chip with an array of microwells etched in a silicon dioxide film and a glass coverslip with a series of thin gold counter electrode lines. We have demonstrated that 0.
View Article and Find Full Text PDFWe report a method for rapid, electric field directed assembly of high-density protein-conjugated microbead arrays. Photolithography is used to fabricate an array of micron to sub-micron-scale wells in an epoxy-based photoresist on a silicon wafer coated with a thin gold film, which serves as the primary electrode. A thin gasket is used to form a microfluidic chamber between the wafer and a glass coverslip coated with indium-tin oxide, which serves as the counter electrode.
View Article and Find Full Text PDFA method for rapidly assembling high-density DNA arrays with near-perfect order is described. Photolithography is used to generate a wafer-scale array of microwells in a layer of photoresist on a chemically functionalized glass coverslip. The array is enclosed within a microfluidic device, and a suspension of superparamagnetic microbeads conjugated to DNA molecules is introduced into the chamber.
View Article and Find Full Text PDF