Background: Necrotizing enterocolitis (NEC), a necrotic inflammation of the intestine, represents a major health problem in the very premature infant. Although prevention is difficult, the combination of ingestion of maternal-expressed breastmilk in conjunction with a probiotic provides the best protection. In this study, we establish a mechanism for breastmilk/probiotic protection.
View Article and Find Full Text PDFAngelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, expressive speech impairment, movement disorder, epilepsy, and a happy demeanor. Children with AS are frequently reported to be poor feeders during infancy and as having gastrointestinal issues such as constipation, reflux, and abnormal food related behaviors throughout their lifetime. To assess the prevalence of gastrointestinal disorders in individuals with AS, we retrospectively analyzed medical records of 120 individuals seen at the Angelman Syndrome Clinic at Massachusetts General Hospital and 43 individuals seen at the University of North Carolina Comprehensive Angelman Clinic.
View Article and Find Full Text PDFObjectives: The secreted metabolites of probiotics are cytoprotective to intestinal epithelium and have been shown to attenuate inflammation and reduce gut permeability. The present study was designed to determine the protective effects of probiotic conditioned media (PCM) from Bifidobacterium infantis (BCM) and Lactobacillus acidophilus (LCM) on interleukin (IL)-1β-induced intestinal barrier compromise.
Methods: The epithelial barrier was determined by measuring the transepithelial electrical resistance (TER) across a Caco-2 cell monolayer using a Transwell model.
Am J Physiol Gastrointest Liver Physiol
October 2016
The therapeutic and preventive application of probiotics for necrotizing enterocolitis (NEC) has been supported by more and more experimental and clinical evidence in which Toll-like receptor 4 (TLR-4) exerts a significant role. In immune cells, probiotics not only regulate the expression of TLR-4 but also use the TLR-4 to modulate the immune response. Probiotics may also use the TLR-4 in immature enterocytes for anti-inflammation.
View Article and Find Full Text PDFBackground: Evidence suggests that excessive inflammation of the immature intestine may predispose premature infants to necrotizing enterocolitis (NEC). We investigated the anti-inflammatory effects of docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA), and arachidonic acid (ARA) in human fetal and adult intestinal epithelial cells (IEC) in primary culture.
Methods: Human fetal IEC in culture were derived from a healthy fetal small intestine (H4) or resected small intestine of a neonate with NEC (NEC-IEC).
Combination regimens of Bifidobacterium infantis and Lactobacillus acidophilus have been demonstrated to prevent necrotizing enterocolitis (NEC) in clinical trials. However, the molecular mechanisms responsible for this protective effect are not well understood. Additionally, conditioned media from individual cultures of these two probiotics show strain specific modulation of inflammation using in vitro human intestinal NEC models.
View Article and Find Full Text PDFBackground: Bacterial contact in utero modulates fetal and neonatal immune responses. Maternal probiotic supplementation reduces the risk of immune-mediated disease in the infant. We investigated the immunomodulatory properties of live Lactobacillus rhamnosus GG and its SpaC pilus adhesin in human fetal intestinal models.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
May 2014
Necrotizing enterocolitis (NEC) is associated with a high morbidity and mortality in very low birth weight infants. Several hypotheses regarding the pathogenesis of NEC have been proposed but to date no effective treatment is available. Previous studies suggest that probiotic supplementation is protective.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
January 2013
Necrotizing enterocolitis (NEC), an extensive intestinal inflammatory disease of premature infants, is caused, in part, by an excessive inflammatory response to initial bacterial colonization due to the immature expression of innate immune response genes. In a randomized placebo-controlled clinical trial, supplementation of very low birth weight infants with probiotics significantly reduced the incidence of NEC. The primary goal of this study was to determine whether secreted products of these two clinically effective probiotic strains, Bifidobacterium infantis and Lactobacillus acidophilus, prevented NEC by accelerating the maturation of intestinal innate immune response genes and whether both strains are required for this effect.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is a devastating condition characterized by diffuse intestinal inflammation and necrosis in preterm infants. It is the most common gastrointestinal emergency in the neonatal intensive care unit and is associated with significant morbidity and mortality. Primary risk factors include prematurity and low birth weight.
View Article and Find Full Text PDFNecrotizing enterocolitis (NEC) is a common gastrointestinal inflammatory necrosis affecting almost exclusively premature infants usually after oral nutrition has been started, for example, 10 day plus postpartum. Although the pathogenesis is incompletely understood, major risk factors include prematurity and incomplete bacterial colonization. Evidence has been shown that the premature infant because of rapid passage through the birth canal or because of delivery by cesarean section has an inadequate initial ingestion of maternal colonic and vaginal flora and therefore, an inadequate initial colonization with less diversity of bacteria phylla and fewer species of bacteria in the microbiota.
View Article and Find Full Text PDF