J Control Release
September 2018
Bone morphogenetic proteins (BMP's) are vital for bone and cartilage formation, where bone morphogenetic protein-2 (BMP-2) is acknowledged as a growth factor in osteoblast differentiation. However, uncontrolled delivery may result in adverse clinical effects. In this study we investigated the possibility for longitudinal and non-invasive monitoring of implanted [I]BMP-2 retention and its relation to ossification at the site of implantation.
View Article and Find Full Text PDFThe effects of pre-incubation of hyaluronan hydrogels, for different lengths of time after the initiation of chemical crosslinking and prior to injection, were explored both by investigating the in vitro BMP-2 release kinetics from the hydrogel and by studying the ectopic bone formation in rats. From the curing profile, obtained from rheological analysis, appropriate pre-incubation times (1 min, 5 h and 3 days) were selected, to prepare slightly, moderately and fully cured hydrogels. Comparable release profiles were observed for all three test groups in vitro.
View Article and Find Full Text PDFThe possibility to affect bone formation by using crushed versus solid hydrogels as carriers for bone morphogenetic protein 2 (BMP-2) was studied. Hydrogels, based on chemical crosslinking between hyaluronic acid and poly(vinyl alcohol) derivatives, were loaded with BMP-2 and hydroxyapatite. Crushed and solid forms of the gels were analyzed both in vitro via a release study using ¹²⁵I radioactive labeling of BMP-2, and in vivo in a subcutaneous ectopic bone model in rats.
View Article and Find Full Text PDFThe development of biomaterial for bone regeneration requires animal models that are reliable and designed to mimic clinically relevant situations. We have previously investigated hydrogels comprised of modified hyaluronic acid and polyvinyl alcohol in models of ectopic bone formation. This hydrogel induces bone regeneration when loaded with bone morphogenetic proteins (BMPs).
View Article and Find Full Text PDFCurrent treatment of fractures often involves the use of bone graft or bone morphogenetic proteins (BMP) to induce fracture healing, especially in patients with a compromised healing capacity. BMP has to be delivered in conjunction with a carrier. Unfortunately, there are drawbacks and limitations with current carriers, including their bovine origin which carries the risk of an immunological response.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
August 2011
The present work describes the feasibility of a cross-linkable injectable hyaluronan hydrogel for cartilage repair. The hydrogel used is a two-component system based on aldehyde-modified hyaluronan and hydrazide-modified polyvinyl alcohol, which are rapidly cross-linked in situ upon mixing. The in vitro study showed that chondrocytes and mesenchymal cells cultured in the gel form cartilage-like tissue, rich in glycosaminoglycans, collagen type II and aggrecan.
View Article and Find Full Text PDFBackground: Reconstruction of large craniofacial bone defects is a challenge using bone transplants or alloplastic materials. The use of bone morphogenetic protein (BMP)-2 together with a suitable carrier is an attractive option that may facilitate new bone formation. The authors have developed a hydrogel that is formed in situ by the cross-linking of multifunctional hyaluronic acid and polyvinyl alcohol derivatives mixed with hydroxyapatite nanoparticles, in the presence of BMP-2.
View Article and Find Full Text PDFHere we present a novel injectable hydrogel which forms a template for de novo formation of bone tissue. Hydrogel formation takes place in situ in less than 1 min by the cross-linking of multifunctional hyaluronic acid and polyvinyl alcohol derivatives. Endogenous cells are recruited in vivo by incorporating bone morphogenetic protein-2 (BMP-2), a powerful promoter for osteogenic differentiation.
View Article and Find Full Text PDFA method is presented for the preparation of hyaluronic acid derivatives obtained through triazine-activated amidation. A number of amines were successfully reacted with hyaluronic acid carboxyl groups using 2-chloro-4,6-dimethoxy-1,3,5-triazine as an activating species in a mixture of water and acetonitrile under neutral conditions. By varying the amount of triazine reagent, it was possible to control the degree of modification.
View Article and Find Full Text PDF