We demonstrate a highly efficient thermal conversion of four differently substituted polydiacetylenes (PDAs 1 and 2a-c) into virtually indistinguishable N = 8 armchair graphene nanoribbons ([8]GNR). PDAs 1 and 2a-c are themselves easily accessed through photochemically initiated topochemical polymerization of diynes 3 and 4a-c in the crystal. The clean, quantitative transformation of PDAs 1 and 2a-c into [8]GNR occurs via a series of Hopf pericyclic reactions, followed by aromatization reactions of the annulated polycyclic aromatic intermediates, as well as homolytic bond fragmentation of the edge functional groups upon heating up to 600 °C under an inert atmosphere.
View Article and Find Full Text PDFParahydrogen-induced polarization (PHIP) is a method for enhancing NMR sensitivity. The pairwise addition of parahydrogen in aqueous media by heterogeneous catalysts can lead to applications in chemical and biological systems. Polarization enhancement can be transferred from H to C for longer lifetimes by using zero field cycling.
View Article and Find Full Text PDFAzide-functionalized graphene oxide (AGO) was covalently anchored onto commercial reverse osmosis (RO) membrane surfaces via azide photochemistry. Surface modification was carried out by coating the RO membrane with an aqueous dispersion of AGO followed by UV exposure under ambient conditions. This simple process produces a hydrophilic, smooth, antibacterial membrane with limited reduction in water permeability or salt selectivity.
View Article and Find Full Text PDF3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance.
View Article and Find Full Text PDFWe present a method to produce anti-fouling reverse osmosis (RO) membranes that maintains the process and scalability of current RO membrane manufacturing. Utilizing perfluorophenyl azide (PFPA) photochemistry, commercial reverse osmosis membranes were dipped into an aqueous solution containing PFPA-terminated poly(ethyleneglycol) species and then exposed to ultraviolet light under ambient conditions, a process that can easily be adapted to a roll-to-roll process. Successful covalent modification of commercial reverse osmosis membranes was confirmed with attenuated total reflectance infrared spectroscopy and contact angle measurements.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2013
Detection of single walled carbon nanotubes (CNTs) was performed using single particle-inductively coupled plasma-mass spectrometry (spICPMS). Due to the ambiguities inherent in detecting CNTs by carbon analysis, particularly in complex environmental matrices, this study focuses on using trace catalytic metals intercalated in the CNT structure as proxies for the nanotubes. Using a suite of commercially available CNTs, the monoisotopic elements Co and Y were found to be the most effective for differentiation of particulate pulses from background.
View Article and Find Full Text PDF