Network-based methods are playing an increasingly important role in drug design. Our main question in this paper was whether the efficiency of drug target proteins to spread perturbations in the human interactome is larger if the binding drugs have side effects, as compared to those which have no reported side effects. Our results showed that in general, drug targets were better spreaders of perturbations than non-target proteins, and in particular, targets of drugs with side effects were also better spreaders of perturbations than targets of drugs having no reported side effects in human protein-protein interaction networks.
View Article and Find Full Text PDFHere we present ComPPI, a cellular compartment-specific database of proteins and their interactions enabling an extensive, compartmentalized protein-protein interaction network analysis (URL: http://ComPPI.LinkGroup.hu).
View Article and Find Full Text PDFConformational barcodes tag functional sites of proteins and are decoded by interacting molecules transmitting the incoming signal. Conformational barcodes are modified by all co-occurring allosteric events induced by post-translational modifications, pathogen, drug binding, etc. We argue that fuzziness (plasticity) of conformational barcodes may be increased by disordered protein structures, by integrative plasticity of multi-phosphorylation events, by increased intracellular water content (decreased molecular crowding) and by increased action of molecular chaperones.
View Article and Find Full Text PDFAnalysis of network dynamics became a focal point to understand and predict changes of complex systems. Here we introduce Turbine, a generic framework enabling fast simulation of any algorithmically definable dynamics on very large networks. Using a perturbation transmission model inspired by communicating vessels, we define a novel centrality measure: perturbation centrality.
View Article and Find Full Text PDFThe ABC (ATP Binding Cassette) transporter protein superfamily comprises a large number of ubiquitous and functionally versatile proteins conserved from archaea to humans. ABC transporters have a key role in many human diseases and also in the development of multidrug resistance in cancer and in parasites. Although a dramatic progress has been achieved in ABC protein studies in the last decades, we are still far from a detailed understanding of their molecular functions.
View Article and Find Full Text PDFIn the past few years, network-based tools have become increasingly important in the identification of novel molecular targets for drug development. Systems-based approaches to predict signal transduction-related drug targets have developed into an especially promising field. Here, we summarize our studies, which indicate that modular bridges and overlaps of protein-protein interaction and signaling networks may be of key importance in future drug design.
View Article and Find Full Text PDF