Publications by authors named "Kristjan Zobel"

Plant functional traits can vary widely as a result of phenotypic plasticity to abiotic conditions. Trait variation may also reflect responses to the identity of neighbours, although not all species are equally responsive to their biotic surroundings. We hypothesized that responses to neighbours are shaped by spatial community patterns and resulting variability in neighbour composition.

View Article and Find Full Text PDF

Little is known about the consequences of phenotypic plasticity in co-existing species for plant community structure. However, it has been proposed that the potential of plants to exhibit plastic responses to light availability could be a key factor determining the capability of individuals to co-exist at small scales. Our previous research demonstrated that morphological plasticity to light was positively related to small-scale species richness in a temperate grassland.

View Article and Find Full Text PDF

Plant species show different responses to the elevated temperatures that are resulting from global climate change, depending on their ecological and physiological characteristics. The highly invasive shrub Lantana camara occurs between the latitudes of 35 °N and 35 °S. According to current and future climate scenarios predicted by the CLIMEX model, climatically suitable areas for L.

View Article and Find Full Text PDF

Functional trait differences among species are increasingly used to infer the effects of biotic and abiotic processes on species coexistence. Commonly, the trait diversity observed within communities is compared to patterns simulated in randomly generated communities based on sampling within a region. The resulting patterns of trait convergence and divergence are assumed to reveal abiotic and biotic processes, respectively.

View Article and Find Full Text PDF

Understanding how communities of living organisms assemble has been a central question in ecology since the early days of the discipline. Disentangling the different processes involved in community assembly is not only interesting in itself but also crucial for an understanding of how communities will behave under future environmental scenarios. The traditional concept of assembly rules reflects the notion that species do not co-occur randomly but are restricted in their co-occurrence by interspecific competition.

View Article and Find Full Text PDF

Increased importance of genetic drift and selection for stress resistance have been predicted to lead to a reduction in the degree of phenotypic plasticity in populations at margins of a species' geographical range, relative to those in the centre. We examined the effect of population positioning within the species range on degree of active morphological plasticity to vegetation shade. Importantly, we discriminated between active, size-independent morphological adjustments in response to shade and passive changes in morphology caused by the dependence of morphological traits on plant size, as only the former are considered to be adaptive.

View Article and Find Full Text PDF

Theoretical studies claim that if co-occurring species have very different mobilities this will result in greater small-scale species richness, but empirical evidence is still lacking. We measured horizontal vegetative mobility (VM) of 48 herbaceous understory species and estimated small-scale species richness in early and late successional boreonemoral herb-rich coniferous forests in central Estonia. VM of erosulate growth forms was significantly higher than that of hemi-rosette and rosette growth forms.

View Article and Find Full Text PDF
Article Synopsis
  • Physical obstructions can significantly impact how well plants grow by limiting root space.
  • The study focused on eight grass species to see how their roots navigate around obstacles like gravel and whether they alter their growth patterns based on nutrient availability.
  • Findings showed that only species from nutrient-poor habitats adapted their root placement in obstructed areas, and this behavior was influenced by their root exudates, suggesting roots can sense and respond to their own chemicals in the soil.
View Article and Find Full Text PDF

Background And Aims: Lobed leaves are considered selectively advantageous in conditions of high irradiance. However, most studies have involved woody species, with only a few considering the role of leaf lobation in herbaceous rosette species. In this study, it is hypothesized that, in addition to its adaptive value in high light, leaf lobation may add to the function of petioles as vertical spacers in herbaceous species in conditions of strong competition for light.

View Article and Find Full Text PDF

Practical approaches to monitoring biological diversity vary widely among countries, and the accumulating data are frequently not generalizable at the international scale. Although many present monitoring schemes, especially in developed countries, produce highly complex data, there is often a lack of basic data about the level and spatial distribution of biodiversity. We augmented the general framework for improving biomonitoring, proposed by Green et al.

View Article and Find Full Text PDF

Several theoretical considerations imply that high shoot morphological plasticity could increase competition symmetry and favour plant coexistence. We tested whether mean plasticity across co-occurring species is a key trait for explaining ramet density and species richness in herbaceous vegetation. We used three data sets to test the hypotheses: (a) experimentally achieved estimates of plasticity to light availability for 35 herbaceous species; (b) richness, ramet density and canopy architecture data from 17 herbaceous communities; (c) species richness data from a 5-year permanent-plot study in a calcareous grassland.

View Article and Find Full Text PDF