Unlabelled: Nerves are a component of the tumor microenvironment contributing to cancer progression, but the role of cells from nerves in facilitating cancer invasion remains poorly understood. Here we show that Schwann cells (SC) activated by cancer cells collectively function as tumor-activated Schwann cell tracks (TAST) that promote cancer cell migration and invasion. Nonmyelinating SCs form TASTs and have cell gene expression signatures that correlate with diminished survival in patients with pancreatic ductal adenocarcinoma.
View Article and Find Full Text PDFFront Cell Neurosci
February 2022
After nerve injury, both Schwann cells and neurons switch to pro-regenerative states. For Schwann cells, this involves reprogramming of myelin and Remak cells to repair Schwann cells that provide the signals and mechanisms needed for the survival of injured neurons, myelin clearance, axonal regeneration and target reinnervation. Because functional repair cells are essential for regeneration, it is unfortunate that their phenotype is not robust.
View Article and Find Full Text PDFAfter nerve injury, myelin and Remak Schwann cells reprogram to repair cells specialized for regeneration. Normally providing strong regenerative support, these cells fail in aging animals, and during chronic denervation that results from slow axon growth. This impairs axonal regeneration and causes significant clinical problems.
View Article and Find Full Text PDFNerve regeneration is a key biological process in those recovering from neural trauma. From animal models it is known that the regenerative capacity of the peripheral nervous system (PNS) relies heavily on the remarkable ability of Schwann cells to undergo a phenotypic shift from a myelinating phenotype to one that is supportive of neural regeneration. In rodents, a great deal is known about the molecules that control this process, such as the transcription factors c-Jun and early growth response protein 2 (EGR2/KROX20), or mark the cells and cellular changes involved, including SOX10 and P75 neurotrophin receptor (p75NTR).
View Article and Find Full Text PDFThe cells of the neural crest, often referred to as neural crest stem cells, give rise to a number of sub-lineages, one of which is Schwann cells, the glial cells of peripheral nerves. Crest cells transform to adult Schwann cells through the generation of two well defined intermediate stages, the Schwann cell precursors (SCP) in early embryonic nerves, and immature Schwann cells (iSch) in late embryonic and perinatal nerves. SCP are formed when neural crest cells enter nascent nerves and form intimate relationships with axons, a diagnostic feature of glial cells.
View Article and Find Full Text PDFFront Cell Neurosci
February 2019
The remarkable plasticity of Schwann cells allows them to adopt the Remak (non-myelin) and myelin phenotypes, which are specialized to meet the needs of small and large diameter axons, and differ markedly from each other. It also enables Schwann cells initially to mount a strikingly adaptive response to nerve injury and to promote regeneration by converting to a repair-promoting phenotype. These repair cells activate a sequence of supportive functions that engineer myelin clearance, prevent neuronal death, and help axon growth and guidance.
View Article and Find Full Text PDFSchwann cells respond to nerve injury by cellular reprogramming that generates cells specialized for promoting regeneration and repair. These repair cells clear redundant myelin, attract macrophages, support survival of damaged neurons, encourage axonal growth, and guide axons back to their targets. There are interesting parallels between this response and that found in other tissues.
View Article and Find Full Text PDFThe neural crest-derived ensheathing glial cells of the olfactory nerve (OECs) are unique in spanning both the peripheral and central nervous systems: they ensheathe bundles of axons projecting from olfactory receptor neurons in the nasal epithelium to their targets in the olfactory bulb. OECs are clinically relevant as a promising autologous cell transplantation therapy for promoting central nervous system repair. They are also important for fertility, being required for the migration of embryonic gonadotropin-releasing hormone (GnRH) neurons from the olfactory placode along terminal nerve axons to the medial forebrain, which they enter caudal to the olfactory bulbs.
View Article and Find Full Text PDFSchwann cell precursors are the first defined stage in the generation of Schwann cells from the neural crest and represent the glial cell of embryonic nerves. Highly pure cultures of these cells can be obtained by enzymatic dissociation of nerves dissected from the limbs of 14- or 12-day-old rat and mouse embryos, respectively. Since Schwann cell precursors, unlike Schwann cells, are acutely dependent on axonal signals for survival, they require addition of trophic factors, typically β-neuregulin-1, for maintenance in cell culture.
View Article and Find Full Text PDFSchwann cell c-Jun is implicated in adaptive and maladaptive functions in peripheral nerves. In injured nerves, this transcription factor promotes the repair Schwann cell phenotype and regeneration and promotes Schwann-cell-mediated neurotrophic support in models of peripheral neuropathies. However, c-Jun is associated with tumor formation in some systems, potentially suppresses myelin genes, and has been implicated in demyelinating neuropathies.
View Article and Find Full Text PDFJ Neurosci
September 2017
Repair Schwann cells play a critical role in orchestrating nerve repair after injury, but the cellular and molecular processes that generate them are poorly understood. Here, we perform a combined whole-genome, coding and non-coding RNA and CpG methylation study following nerve injury. We show that genes involved in the epithelial-mesenchymal transition are enriched in repair cells, and we identify several long non-coding RNAs in Schwann cells.
View Article and Find Full Text PDFAfter nerve injury, Schwann cells convert to a phenotype specialized to promote repair. But during the slow process of axonal regrowth, these repair Schwann cells gradually lose their regeneration-supportive features and eventually die. Although this is a key reason for the frequent regeneration failures in humans, the transcriptional mechanisms that control long-term survival and phenotype of repair cells have not been studied, and the molecular signaling underlying their decline is obscure.
View Article and Find Full Text PDFIt is becoming clear that a radical change of cell identity of differentiated cells in vivo, triggered by injury or other adversity, provides an essential route to recovery for many different mammalian tissues. This process, which we term adaptive cellular reprogramming, promotes regeneration in one of two ways: by providing a transient class of repair cells or by directly replacing cells lost during tissue damage. Controlling adaptive changes in cell fate in vivo in order to promote the body's own cell therapy, particularly by pharmacology rather than genetics, is likely to become an increasingly active area of future work.
View Article and Find Full Text PDFAlthough Schwann cell myelin breakdown is the universal outcome of a remarkably wide range of conditions that cause disease or injury to peripheral nerves, the cellular and molecular mechanisms that make Schwann cell-mediated myelin digestion possible have not been established. We report that Schwann cells degrade myelin after injury by a novel form of selective autophagy, myelinophagy. Autophagy was up-regulated by myelinating Schwann cells after nerve injury, myelin debris was present in autophagosomes, and pharmacological and genetic inhibition of autophagy impaired myelin clearance.
View Article and Find Full Text PDFSchwann cells develop from the neural crest in a well-defined sequence of events. This involves the formation of the Schwann cell precursor and immature Schwann cells, followed by the generation of the myelin and nonmyelin (Remak) cells of mature nerves. This review describes the signals that control the embryonic phase of this process and the organogenesis of peripheral nerves.
View Article and Find Full Text PDFThe transcription factor Krox-20 (Egr2) is a master regulator of Schwann cell myelination. In mice from which calcineurin B had been excised in cells of the neural crest lineage, calcineurin-nuclear factor of activated T cells (NFAT) signaling was required for neuregulin-related Schwann cell myelination (Kao et al. [2009] Immunity 12:359-372).
View Article and Find Full Text PDFThe radical response of peripheral nerves to injury (Wallerian degeneration) is the cornerstone of nerve repair. We show that activation of the transcription factor c-Jun in Schwann cells is a global regulator of Wallerian degeneration. c-Jun governs major aspects of the injury response, determines the expression of trophic factors, adhesion molecules, the formation of regeneration tracks and myelin clearance and controls the distinctive regenerative potential of peripheral nerves.
View Article and Find Full Text PDFThe AP-1 transcription factor c-Jun is a master regulator of the axonal response in neurons. c-Jun also functions as a negative regulator of myelination in Schwann cells (SCs) and is strongly reactivated in SCs upon axonal injury. We demonstrate here that, after injury, the absence of c-Jun specifically in SCs caused impaired axonal regeneration and severely increased neuronal cell death.
View Article and Find Full Text PDFPhysical damage to the peripheral nerves triggers Schwann cell injury response in the distal nerves in an event termed Wallerian degeneration: the Schwann cells degrade their myelin sheaths and dedifferentiate, reverting to a phenotype that supports axon regeneration and nerve repair. The molecular mechanisms regulating Schwann cell plasticity in the PNS remain to be elucidated. Using both in vivo and in vitro models for peripheral nerve injury, here we show that inhibition of p38 mitogen-activated protein kinase (MAPK) activity in mice blocks Schwann cell demyelination and dedifferentiation following nerve injury, suggesting that the kinase mediates the injury signal that triggers distal Schwann cell injury response.
View Article and Find Full Text PDFPax-3 is a paired domain transcription factor that plays many roles during vertebrate development. In the Schwann cell lineage, Pax-3 is expressed at an early stage in Schwann cells precursors of the embryonic nerve, is maintained in the nonmyelinating cells of the adult nerve, and is upregulated in Schwann cells after peripheral nerve injury. Consistent with this expression pattern, Pax-3 has previously been shown to play a role in repressing the expression of the myelin basic protein gene in Schwann cells.
View Article and Find Full Text PDFAn important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes.
View Article and Find Full Text PDF