Publications by authors named "Kristjan H Gretarsson"

During tumor development, promoter CpG islands that are normally silenced by Polycomb repressive complexes (PRCs) become DNA-hypermethylated. The molecular mechanism by which de novo DNA methyltransferase(s) [DNMT(s)] catalyze CpG methylation at PRC-regulated regions remains unclear. Here, we report a cryo-electron microscopy structure of the DNMT3A long isoform (DNMT3A1) amino-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine-119 monoubiquitination (H2AK119Ub).

View Article and Find Full Text PDF

During tumor development, promoter CpG islands (CGIs) that are normally silenced by Polycomb repressive complexes (PRCs) become DNA hypermethylated. The molecular mechanism by which DNA methyltransferase(s) catalyze CpG methylation at PRC-regulated regions remains unclear. Here we report a cryo-EM structure of the DNMT3A long isoform (DNMT3A1) N-terminal region in complex with a nucleosome carrying PRC1-mediated histone H2A lysine 119 monoubiquitination (H2AK119Ub).

View Article and Find Full Text PDF

Unlabelled: Polycomb Repressive Complex 2 (PRC2)-mediated histone H3K27 tri-methylation (H3K27me3) recruits canonical PRC1 (cPRC1) to maintain heterochromatin. In early development, polycomb-regulated genes are connected through long-range 3D interactions which resolve upon differentiation. Here, we report that polycomb looping is controlled by H3K27me3 spreading and regulates target gene silencing and cell fate specification.

View Article and Find Full Text PDF

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways.

View Article and Find Full Text PDF

Cell differentiation typically occurs with concomitant shape transitions to enable specialized functions. To adopt a different shape, cells need to change the mechanical properties of their surface. However, whether cell surface mechanics control the process of differentiation has been relatively unexplored.

View Article and Find Full Text PDF

Knockout CRISPR screening enables the unbiased discovery of genes with a functional role in almost any cellular or molecular process of interest. The approach couples a genome-scale library of guide RNA (gRNA), the Cas9 endonuclease, and a faithful phenotypic read-out to systematically identify candidate genes via their loss-of-function effect. Here we provide a detailed description of the CRISPR screen protocol and outline how to apply it to decipher the gene networks that underlie developmental cell fate decisions.

View Article and Find Full Text PDF

Early mammalian development entails genome-wide epigenome remodeling, including DNA methylation erasure and reacquisition, which facilitates developmental competence. To uncover the mechanisms that orchestrate DNA methylation dynamics, we coupled a single-cell ratiometric DNA methylation reporter with unbiased CRISPR screening in murine embryonic stem cells (ESCs). We identify key genes and regulatory pathways that drive global DNA hypomethylation, and characterize roles for Cop1 and Dusp6.

View Article and Find Full Text PDF