Natural deep eutectic solvents (NADES) are a third class of liquids, separate from water and lipids. Some NADES, especially those containing organic acids, have been suggested to possess antimicrobial properties. Such properties may be advantageous when NADES are used as solvents in e.
View Article and Find Full Text PDFNatural deep eutectic solvents (NADES) are a newly discovered group of eutectics which has shown promise as a solvent in antimicrobial photodynamic therapy (aPDT). The purpose of this study was to investigate preparations of an anionic porphyrin, meso-tetra-(4-carboxyphenyl)-porphine (TCPP), solubilised in NADES, with regard to their physicochemical and antibacterial properties. The NADES CS (pH∼0), ChX (pH∼4) and MFG (pH∼1) solubilised TCPP with absorption maximum ∼443nm and emission maximum ∼678nm, indicating formation of the TCPP dication.
View Article and Find Full Text PDFNatural deep eutectic solvents (NADES) are a novel class of eutectics which show a unique potential as solubilizer of water insoluble compounds. The purpose of the current study was to evaluate the potential of NADES as a solvent for the hydrophobic photosensitizer curcumin for use in antimicrobial photodynamic therapy (aPDT). Two of the seventeen NADES initially prepared (i.
View Article and Find Full Text PDFNeutral porphyrins for antibacterial photodynamic therapy (aPDT) have received little attention due to their tendency to aggregate in aqueous media and reports of low phototoxic effect. These compounds may be less toxic to cells than positively and negatively charged photosensitisers. The preparation of highly bacterial phototoxic formulations of neutral porphyrins remains an open field of research with great potential if achievable.
View Article and Find Full Text PDFContext: Bacterial resistance to antibiotics is increasing and alternative antibacterial treatments like antimicrobial photodynamic therapy (aPDT) are needed. Curcumin is under investigation as a potential photosensitizer in aPDT.
Objective: The purpose of this study was to develop rapidly dissolving formulations of curcumin that could photoinactivate both Gram-positive and Gram-negative bacteria.