Publications by authors named "Kristine Niss"

In a recent paper, Di Lisio et al. [J. Chem.

View Article and Find Full Text PDF

This paper presents dielectric and neutron spectroscopy data on two different glycerol-water mixtures at elevated pressures. Glycerol-water liquid mixtures have a high concentration of hydrogen bonds which usually is expected to lead to complex dynamics. However, with regard to the pressure dependence of the dynamics we reveal a surprisingly simple picture.

View Article and Find Full Text PDF

Room temperature ionic liquids (RTILs) are molten salts consisting entirely of ions and have over the past decades gained increased interest due to their high potential in applications. These structurally complex systems often display multiple relaxation modes in the response functions at lower frequencies, hinting to complex underlying mechanisms. While the existence of these multimodal spectra in the shear mechanical, dielectric, and light scattering response of RTILs has been confirmed multiple times, controversy still surrounds the origin.

View Article and Find Full Text PDF

We study a united-atom model of the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethyl)sulfonylamide to determine to what extent there exist curves in the phase diagram along which the microscopic dynamics are invariant when expressed in dimensionless, or reduced, form. The initial identification of these curves, termed isodynes, is made by noting that contours of reduced shear viscosity and reduced self-diffusion coefficient coincide to a good approximation. Choosing specifically the contours of reduced viscosity as nominal isodynes, further simulations were carried out for state points on these, and other aspects of dynamics were investigated to study their degree of invariance.

View Article and Find Full Text PDF

The aging rate of glasses has traditionally been modeled as a function of temperature, T, and fictive temperature, while density, ρ, is not explicitly included as a parameter. However, this description does not naturally connect to the modern understanding of what governs the relaxation rate in equilibrium. In equilibrium, it is well known that the relaxation rate, γ, depends on temperature and density.

View Article and Find Full Text PDF

Room temperature ionic liquids are considered to have huge potential for practical applications such as batteries. However, their high viscosity presents a significant challenge to their use changing from niche to ubiquitous. The modelling and prediction of viscosity in ionic liquids is the subject of an ongoing debate involving two competing hypotheses: molecular and local mechanisms collective and long-range mechanisms.

View Article and Find Full Text PDF

The noncrystalline glassy state of matter plays a role in virtually all fields of materials science and offers complementary properties to those of the crystalline counterpart. The caveat of the glassy state is that it is out of equilibrium and therefore exhibits physical aging, i.e.

View Article and Find Full Text PDF

Recent experimental results for the structure in the ionic liquid PYR TFSI have shown invariance in the main structure factor peak along curves of equal electrical conductivity [Hansen et al., Phys. Chem.

View Article and Find Full Text PDF

The time scales of structural relaxation are investigated on the basis of five different response functions for 1,2, 6-hexanetriol, a hydrogen-bonded liquid with a minor secondary contribution, and 2,6,10,15,19,23-hexamethyl-tetracosane (squalane), a van der Waals-bonded liquid with a prominent secondary relaxation process. Time scales of structural relaxation are derived as inverse peak frequencies for each investigated response function. For 1,2,6-hexanetriol, the ratios of the time scales are temperature-independent, while a decoupling of time scales is observed for squalane in accordance with the literature.

View Article and Find Full Text PDF

High salt concentration has been shown to induce increased electrochemical stability in organic solvent-based electrolytes. Accompanying the change in bulk properties is a structural ordering on mesoscopic length scales and changes in the ion transport mechanism have also been suggested. Here we investigate the local structure and dynamics in highly concentrated acetonitrile electrolytes as a function of salt concentration.

View Article and Find Full Text PDF

A detailed understanding of the local dynamics in ionic liquids remains an important aspect in the design of new ionic liquids as advanced functional fluids. Here, we use small-angle X-ray scattering and quasi-elastic neutron spectroscopy to investigate the local structure and dynamics in a model ionic liquid as a function of temperature and pressure, with a particular focus on state points (,) where the macroscopic dynamics, i.e.

View Article and Find Full Text PDF

Room temperature ionic liquids are salts with low melting points achieved by employing bulky and asymmetrical ions. The molecular design leads to apolar and polar parts as well as the presence of competing Coulomb and van der Waals interactions giving rise to nano-scale structure, e.g.

View Article and Find Full Text PDF

This paper presents data for the physical aging of the density of squalane upon both non-linear and nearly linear temperature jumps from states of thermal equilibrium. Invoking the single-parameter-aging scenario [Hecksher et al., J.

View Article and Find Full Text PDF

A large class of liquids obey density scaling characterized by an exponent, which quantifies the relative roles of temperature and density for the dynamics. We present experimental evidence that the density-scaling exponent γ is state-point dependent for the glass formers tetramethyl-tetraphenyl-trisiloxane (DC704) and 5-polyphenyl ether (5PPE). A method is proposed that from dynamic and thermodynamic properties at equilibrium estimates the value of γ.

View Article and Find Full Text PDF

Physical aging of glycerol following temperature jumps is studied by dielectric spectroscopy at temperatures just below the glass transition temperature. The data are analyzed using two single-parameter aging tests developed by Hecksher et al. [J.

View Article and Find Full Text PDF

This article gives an overview of experimental results on dynamics in bulk glass-forming molecular liquids. Rather than looking for phenomenology that is universal, in the sense that it is seen in all liquids, the focus is on identifying the basic characteristics, or "stylized facts," of the glass transition problem, i.e.

View Article and Find Full Text PDF

The relaxation dynamics in two van der Waals bonded liquids and one hydrogen-bonding molecular liquid are studied as a function of pressure and temperature by incoherent neutron scattering using simultaneous dielectric spectroscopy. The dynamics are studied in a range of alpha relaxation times from pico- to milliseconds, primarily in the equilibrium liquid state. In this range, we find that isochronal superposition and density scaling work not only for the two van der Waals liquids but also for the hydrogen-bonding liquid, though the density scaling exponent is much smaller for the latter.

View Article and Find Full Text PDF

In this article, we report on the design, manufacture, and testing of a high-pressure cell for simultaneous dielectric and neutron spectroscopy. This cell is a unique tool for studying dynamics on different time scales, from kilo- to picoseconds, covering universal features such as the α relaxation and fast vibrations at the same time. The cell, constructed in cylindrical geometry, is made of a high-strength aluminum alloy and operates up to 500 MPa in a temperature range between roughly 2 and 320 K.

View Article and Find Full Text PDF

The linear volume relaxation and the nonlinear volume aging of a glass-forming liquid are measured, directly compared, and used to extract the out-of-equilibrium relaxation time. This opens a window to investigate how the relaxation time depends on temperature, structure, and volume in parts of phase space that are not accessed by the equilibrium liquid. It is found that the temperature dependence of relaxation time is non-Arrhenius even in the isostructural case-challenging the Adam-Gibbs entropy model.

View Article and Find Full Text PDF

We present a dielectric study on the dynamics of supercooled glycerol during crystallization. We explore the transformation into a solid phase in real time by monitoring the temporal evolution of the amplitude of the dielectric signal. Neither the initial nucleation nor the crystal growth influences the liquid dynamics visibly.

View Article and Find Full Text PDF

The frequency dependent specific heat has been measured under pressure for the molecular glass forming liquid 5-polyphenyl-4-ether in the viscous regime close to the glass transition. The temperature and pressure dependences of the characteristic time scale associated with the specific heat is compared to the equivalent time scale from dielectric spectroscopy performed under identical conditions. It is shown that the ratio between the two time scales is independent of both temperature and pressure.

View Article and Find Full Text PDF

We present dynamic adiabatic bulk modulus data for three organic glass-forming liquids: two van der Waal's liquids, trimethyl-pentaphenyl-trisiloxane (DC705) and dibuthyl phtalate (DBP), and one hydrogen-bonded liquid, 1,2-propanediol (PD). All three liquids are found to obey time-temperature superposition within the uncertainty of the measurement in the adiabatic bulk modulus. The bulk modulus spectra are compared to the shear modulus spectra.

View Article and Find Full Text PDF

A liquid obeys isochronal superposition if its dynamics is invariant along the isochrones in the thermodynamic phase diagram (the curves of constant relaxation time). This paper introduces two quantitative measures of isochronal superposition. The measures are used to test the following six liquids for isochronal superposition: 1,2,6 hexanetriol, glycerol, polyphenyl ether, diethyl phthalate, tetramethyl tetraphenyl trisiloxane, and dibutyl phthalate.

View Article and Find Full Text PDF

Based on previous works on polymers by Bauer et al. [Phys. Rev.

View Article and Find Full Text PDF