Publications by authors named "Kristine L Teppang"

The microviscosity of intracellular environments plays an important role in monitoring cellular function. Thus, the capability of detecting changes in viscosity can be utilized for the detection of different disease states. Viscosity-sensitive fluorescent molecular rotors are potentially excellent probes for these applications; however, the predictable relationships between chemical structural features and viscosity sensitivity are poorly understood.

View Article and Find Full Text PDF

Alzheimer's disease and Parkinson's disease are the two most common neurodegenerative diseases globally. These neurodegenerative diseases have characteristic late-stage symptoms allowing for differential diagnosis; however, they both share the presence of misfolded protein aggregates which appear years before clinical manifestation. Historically, research has focused on the detection of higher-ordered aggregates (or amyloids); however, recent evidence has shown that the oligomeric state of these protein aggregates plays a greater role in disease pathology, resulting in increased efforts to detect oligomers to aid in disease diagnosis.

View Article and Find Full Text PDF

The self-assembly of amyloid-β (Aβ) peptides into amyloid aggregates is a pathological hallmark of Alzheimer's Disease. We previously reported a fluorescent Aryl Cyano Amide (ARCAM) probe that exhibits an increase in fluorescence emission upon binding to Aβ aggregates in solution and in neuronal tissue. Here, we investigate the effect of introducing small aliphatic substituents on the spectroscopic properties of ARCAM both free in solution and when bound to aggregated Aβ.

View Article and Find Full Text PDF

The aggregation of misfolded proteins into amyloids is a common characteristic of many neurodegenerative and non-neurologic diseases. Fluorescent amyloid-targeting probes that discriminate amyloids based on differences in protein composition can provide rapid information to aid in disease diagnosis. In this chapter, we present protocols for the synthesis and use of ANCA-11 as an environmentally-sensitive amyloid-targeting probe that can fluorescently discriminate between amyloids with different disease origin.

View Article and Find Full Text PDF

The rational design of fluorescent nucleoside analogues is greatly hampered by the lack of a general method to predict their photophysics, a problem that is especially acute when base pairing and stacking change fluorescence. To better understand these effects, a series of tricyclic cytidine (tC and tC ) analogues ranging from electron-rich to electron-deficient was designed and synthesized. They were then incorporated into oligonucleotides, and photophysical responses to base pairing and stacking were studied.

View Article and Find Full Text PDF

Pyrogallol[4]arene hexamers are hydrogen-bonded molecular capsules of exceptional kinetic stability that can entrap small molecule guests indefinitely, without exchange, at ambient temperatures. Here, we report on the use of a ball mill to induce self-assembly of the capsule components and the guests in the solid state. Stoichiometric amounts of pyrogallol[4]arene and a guest, which can be an arene, alkane, amine, or carboxylic acid, were milled at 30 Hz for fixed durations, dissolved, and characterization by NMR.

View Article and Find Full Text PDF

Most fluorescent nucleoside analogues are quenched when base stacked and some maintain their brightness, but there has been little progress toward developing nucleoside analogues that markedly increase their fluorescence upon duplex formation. Here, we report on the design and synthesis of a new tricyclic cytidine analogue, 8-diethylamino-tC (8-DEA-tC), that responds to DNA duplex formation with up to a 20-fold increase in fluorescent quantum yield as compared with the free nucleoside, depending on neighboring bases. This turn-on response to duplex formation is the greatest of any reported nucleoside analogue that can participate in Watson-Crick base pairing.

View Article and Find Full Text PDF