Eliud Kipchoge made two attempts to break the 2-hour marathon, in Monza and then Vienna. Here we analyse only the effects of course elevation profile and turn curvatures on his performances. We used publicly available data to determine the undulations in elevation and the radii of the curves on the course.
View Article and Find Full Text PDFBackground: During a race, competing cyclists often cooperate by alternating between leading and drafting positions. This approach allows them to maximize velocity by using the energy saved while drafting, a technique to reduce the overall drag by exploiting the leader's slipstream. We have argued that a similar cooperative drafting approach could benefit elite marathon runners in their quest for the sub-2-hour marathon.
View Article and Find Full Text PDFActive and viewed limb movement activate many similar neural pathways, however, to date most comparison studies have focused on subjects making small, discrete movements of the hands and feet. The purpose of this study was to determine if high-density electroencephalography (EEG) could detect differences in cortical activity and connectivity during active and viewed rhythmic arm and leg movements in humans. Our primary hypothesis was that we would detect similar but weaker electrocortical spectral fluctuations and effective connectivity fluctuations during viewed limb exercise compared to active limb exercise due to the similarities in neural recruitment.
View Article and Find Full Text PDFThere has been a recent surge in the use of electroencephalography (EEG) as a tool for mobile brain imaging due to its portability and fine time resolution. When EEG is combined with independent component analysis (ICA) and source localization techniques, it can model electrocortical activity as arising from temporally independent signals located in spatially distinct cortical areas. However, for mobile tasks, it is not clear how movement artifacts influence ICA and source localization.
View Article and Find Full Text PDFObjective: High-density electroencephelography (EEG) can provide an insight into human brain function during real-world activities with walking. Some recent studies have used EEG to characterize brain activity during walking, but the relative contributions of movement artifact and electrocortical activity have been difficult to quantify. We aimed to characterize movement artifact recorded by EEG electrodes at a range of walking speeds and to test the efficacy of artifact removal methods.
View Article and Find Full Text PDFIn level running, humans and other animals store and recover elastic energy during each step. What role does elastic energy play during downhill and uphill running? We measured the fluctuations of the mechanical energy of the center of mass (CoM) of 15 human participants running at 3 m s(-1) on the level, downhill and uphill on a force-measuring treadmill mounted at 3, 6 and 9 deg. In level running, nearly symmetrical decreases and increases of the combined gravitational potential and kinetic (GPE+KE) energy of the CoM indicated equal possible elastic energy storage and recovery.
View Article and Find Full Text PDFJ Appl Physiol (1985)
April 2012
Recent research has suggested that energy minimization in human walking involves both a fast preprogrammed process and a slow optimization process. Here, we studied human running to test whether these two processes represent control mechanisms specific to walking or a more general strategy for minimizing energetic cost in human locomotion. To accomplish this, we used free response experiments to enforce step frequency with a metronome at values above and below preferred step frequency and then determined the response times for the return to preferred steady-state step frequency when the auditory constraint was suddenly removed.
View Article and Find Full Text PDFAt a given running speed, humans strongly prefer to use a stride frequency near their 'optimal' stride frequency that minimizes metabolic cost. Although there is no definitive explanation for why an optimal stride frequency exists, elastic energy usage has been implicated. Because the possibility for elastic energy storage and return may be impaired on slopes, we investigated whether and how the optimal stride frequency changes during uphill and downhill running.
View Article and Find Full Text PDF