Publications by authors named "Kristine G Cabugao"

Large areas of highly productive tropical forests occur on weathered soils with low concentrations of available phosphorus (P). In such forests, root and microbial production of acid phosphatase enzymes capable of mineralizing organic phosphorus is considered vital to increasing available P for plant uptake.We measured both root and soil phosphatase throughout depth and alongside a variety of root and soil factors to better understand the potential of roots and soil biota to increase P availability and to constrain estimates of the biochemical mineralization within ecosystem models.

View Article and Find Full Text PDF
Article Synopsis
  • The amount of carbon dioxide (CO₂) in the air is going up, which helps plants grow better and use water more efficiently.
  • This growth can lead to more plants and soil that store carbon, which might help slow down climate change.
  • However, figuring out how plants and soil react to this extra CO₂ is complicated, and while there's strong evidence of increased carbon storage, it's hard to know exactly how much it helps and what other factors are at play.
View Article and Find Full Text PDF

Tropical forests generally occur on highly weathered soils that, in combination with the immobility of phosphorus (P), often result in soils lacking orthophosphate, the form of P most easily metabolized by plants and microbes. In these soils, mineralization of organic P can be the major source for orthophosphate. Both plants and microbes encode for phosphatases capable of mineralizing a range of organic P compounds.

View Article and Find Full Text PDF