After decades of being overlooked, a recent wave of studies have explored the roles of microglia in brain health and disease. Microglia perform important physiological functions to set up and maintain proper neural network functions, as well as orchestrate responses to toxic stimuli to limit harm. Many microglial transcriptional programs, extracellular sensing molecules, and functional outputs are seen throughout life.
View Article and Find Full Text PDFRecent advances have highlighted the importance of several innate immune receptors expressed by microglia in Alzheimer's disease (AD). In particular, mounting evidence from AD patients and experimental models indicates pivotal roles for TREM2, CD33, and CD22 in neurodegenerative disease progression. While there is growing interest in targeting these microglial receptors to treat AD, we still lack knowledge of the downstream signaling molecules used by these receptors to orchestrate immune responses in AD.
View Article and Find Full Text PDFPerturbations to the in utero environment can dramatically change the trajectory of offspring neurodevelopment. Insults commonly encountered in modern human life such as infection, toxins, high-fat diet, prescription medications, and others are increasingly linked to behavioral alterations in prenatally-exposed offspring. While appreciation is expanding for the potential consequence that these triggers can have on embryo development, there is a paucity of information concerning how the crucial maternal-fetal interface (MFI) responds to these various insults and how it may relate to changes in offspring neurodevelopment.
View Article and Find Full Text PDFRecent studies have begun to reveal critical roles for the brain's professional phagocytes, microglia, and their receptors in the control of neurotoxic amyloid beta (Aβ) and myelin debris accumulation in neurodegenerative disease. However, the critical intracellular molecules that orchestrate neuroprotective functions of microglia remain poorly understood. In our studies, we find that targeted deletion of SYK in microglia leads to exacerbated Aβ deposition, aggravated neuropathology, and cognitive defects in the 5xFAD mouse model of Alzheimer's disease (AD).
View Article and Find Full Text PDFNLRP3 is a central driver of neurodegeneration thought to function mainly in microglia. In this issue of Neuron, Panicker et al. (2022) find that NLRP3 is a parkin substrate that contributes significantly to Parkinson's disease pathogenesis by acting in neurons.
View Article and Find Full Text PDFIndividuals with neurodevelopmental disorders often experience comorbid gastrointestinal distress and dysregulated immune responses, yet the underlying mechanisms remain unclear. In this issue of Immunity, Kim et al. utilize a murine maternal immune activation model of autism and find that inflammation can alter the microbiota of mothers, which postnatally primes offspring CD4 T cells and increases susceptibility to intestinal inflammation.
View Article and Find Full Text PDFThe immune and nervous systems have unique developmental trajectories that individually build intricate networks of cells with highly specialized functions. These two systems have extensive mechanistic overlap and frequently coordinate to accomplish the proper growth and maturation of an organism. Brain resident innate immune cells - microglia - have the capacity to sculpt neural circuitry and coordinate copious and diverse neurodevelopmental processes.
View Article and Find Full Text PDFThe replication independent (RI) histone H2A.Z is one of the more extensively studied variant members of the core histone H2A family, which consists of many replication dependent (RD) members. The protein has been shown to be indispensable for survival, and involved in multiple roles from DNA damage to chromosome segregation, replication, and transcription.
View Article and Find Full Text PDF