This laboratory previously described a method for scoring the incidence of peripheral blood Pig-a mutant phenotype rat erythrocytes using immunomagnetic separation in conjunction with flow cytometric analysis (In Vivo MutaFlow®). The current work extends the method to mouse blood, using the frequency of CD24-negative reticulocytes (RET(CD24-)) and erythrocytes (RBC(CD24-)) as phenotypic reporters of Pig-a gene mutation. Following assay optimization, reconstruction experiments demonstrated the ability of the methodology to return expected values.
View Article and Find Full Text PDFMutat Res Genet Toxicol Environ Mutagen
April 2015
Validation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, groups of five male and female Sprague Dawley rats were exposed to the mutagens 1,3-propane sultone (80mg/kg/day), ethyl carbamate (600mg/kg/day), or thiotepa (7.5mg/kg/day) for three consecutive days (study days 1-3).
View Article and Find Full Text PDFDetermination of the mode of action of carcinogenic agents is an important factor in risk assessment and regulatory practice. To assess the ability of the erythrocyte-based Pig-a mutation assay to discriminate between genotoxic and non-genotoxic modes of action, the mutagenic response of Sprague Dawley rats exposed to methyl carbamate (MC) or ethyl carbamate (EC) was investigated. EC, a potent carcinogen, is believed to induce DNA damage through the formation of a DNA-reactive epoxide group, whereas the closely structurally related compound, MC, cannot form this epoxide and its weaker carcinogenic activity is thought to be secondary to inflammation and promotion of cell proliferation.
View Article and Find Full Text PDFValidation of the Pig-a gene mutation assay has been based mainly on studies in male rodents. To determine if the mutagen-induced responses of the X-linked Pig-a gene differ in females compared to males, 7- or 14-week old male and female Sprague Dawley rats were exposed to N-ethyl-N-nitrosourea (ENU). In the study with the 7-week old rats, exposure was to 0, 1, 5 or 25mg ENU/kg/day for three consecutive days (study Days 1-3).
View Article and Find Full Text PDFCisplatin is a cytostatic agent used in the treatment of many types of cancer, but its use is associated with increased incidences of secondary leukemia. We evaluated cisplatin's in vivo genotoxic potential by analyzing peripheral blood for Pig-a mutant phenotype erythrocytes and for chromosomal damage in the form of micronuclei. Mutant phenotype reticuloyte and erythrocyte frequencies, based on anti-CD59 antibody labeling and flow cytometric analysis, were determined in male Sprague Dawley rats treated for 28 consecutive days (days 1-28) with up to 0.
View Article and Find Full Text PDFDiethylnitrosamine (DEN) is a genotoxic carcinogen, but in vivo DNA-damaging activities are not usually evident in hematopoietic cells because the short-lived active metabolite is formed mainly in the liver. DEN therefore represented an interesting case for evaluating the performance characteristics of blood-based endpoints of genotoxicity that have been automated using flow cytometric analysis-frequency of micronucleated reticulocytes and Pig-a mutant phenotype reticulocytes (RET(CD59-) ) and erythrocytes (RBC(CD59-) ). Male Sprague Dawley rats were treated for 28 consecutive days with DEN at levels up to 12.
View Article and Find Full Text PDFThe association of glycolytic enzymes with F-actin is proposed to be one mechanism by which these enzymes are compartmentalized, and, as a result, may possibly play important roles for: regulation of the glycolytic pathway, potential substrate channeling, and increasing glycolytic flux. Historically, in vitro experiments have shown that many enzyme/actin interactions are dependent on ionic strength. Herein, Brownian dynamics (BD) examines how ionic strength impacts the energetics of the association of F-actin with the glycolytic enzymes: lactate dehydrogenase (LDH), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-1,6-bisphosphate aldolase (aldolase), and triose phosphate isomerase (TPI).
View Article and Find Full Text PDFFour cyclic dipeptides (piperazine-2,5-diones), cyclo(L-Pro-Gly), cyclo(L-Pro-L-Leu), cyclo(L-Ala-L-Ala), and cyclo(L-Pro-L-Ala), were modeled from crystal structure data. Conformations resulting from energy minimization using molecular mechanics were compared with traditional ab initio and density functional theory geometric optimizations for each dipeptide. In all computational cases, the gas phase was assumed.
View Article and Find Full Text PDFMP2, DFT, and molecular mechanics (AMBER, CVFF, and CFF91) geometry optimizations were performed on the cyclic dipeptide cyclo(L-Pro-L-Pro) starting from crystal structure data. Three stable conformations were identified as energy minima by all methods, but assignment of relative energy varied between the methods. The pi-pi transition feature of the UV circular dichroic (CD) spectrum was predicted for each minimized structure using the classical physics method of the dipole interaction model.
View Article and Find Full Text PDF