Publications by authors named "Kristina Ulicna"

Quantifying cell biology in space and time requires computational methods to detect cells, measure their properties, and assemble these into meaningful trajectories. In this aspect, machine learning (ML) is having a transformational effect on bioimage analysis, now enabling robust cell detection in multidimensional image data. However, the task of cell tracking, or constructing accurate multi-generational lineages from imaging data, remains an open challenge.

View Article and Find Full Text PDF

Chromatin is highly structured, and changes in its organization are essential in many cellular processes, including cell division. Recently, advances in machine learning have enabled researchers to automatically classify chromatin morphology in fluorescence microscopy images. In this protocol, we develop user-friendly tools to perform this task.

View Article and Find Full Text PDF