Publications by authors named "Kristina Shostak"

Genetic studies have shown that the MAP kinase MGV1 and the transcriptional regulator TRI6 regulate many of the same biosynthetic gene clusters (BGCs) in . This study sought to investigate the relationship between and in the regulatory hierarchy. Transgenic strains constitutively expressing and were generated to address both independent and epistatic regulation of BGCs by and .

View Article and Find Full Text PDF

In F. graminearum, the transcription factor TRI6 positively regulates the trichothecene biosynthetic gene cluster (BGC) leading to the production of the secondary metabolite 15-acetyl deoxynivalenol. Secondary metabolites are not essential for survival, instead, they enable the pathogen to successfully infect its host.

View Article and Find Full Text PDF

The presence of acetic acid during industrial alcohol fermentation reduces the yield of fermentation by imposing additional stress on the yeast cells. The biology of cellular responses to stress has been a subject of vigorous investigations. Although much has been learned, details of some of these responses remain poorly understood.

View Article and Find Full Text PDF

Protein biosynthesis is an orderly process that requires a balance between rate and accuracy. To produce a functional product, the fidelity of this process has to be maintained from start to finish. In order to systematically identify genes that affect stop codon bypass, three expression plasmids, pUKC817, pUKC818 and pUKC819, were integrated into the yeast non-essential loss-of-function gene array (5000 strains).

View Article and Find Full Text PDF

A genome-wide screen of a yeast non-essential gene-deletion library was used to identify sick phenotypes due to oxygen deprivation. The screen provided a manageable list of 384 potentially novel as well as known oxygen responding (anoxia-survival) genes. The gene-deletion mutants were further assayed for sensitivity to ferrozine and cobalt to obtain a subset of 34 oxygen-responsive candidate genes including the known hypoxic gene activator, MGA2.

View Article and Find Full Text PDF

Background: Autonomously Replicating Sequences (ARS) in S. cerevisiae serve as origins of DNA replication or as components of cis-acting silencers, which impose positional repression at the mating type loci and at the telomeres. Both types of ARS can act as replicators or silencers, however it is not clear how these quite diverse functions are executed.

View Article and Find Full Text PDF