Transport of cellular and neuronal vesicles, organelles, and other particles along microtubules requires the molecular motor protein dynein (Mallik and Gross, 2004). Critical to dynein function is dynactin, a multiprotein complex commonly thought to be required for dynein attachment to membrane compartments (Karki and Holzbaur, 1999). Recent work also has found that mutations in dynactin can cause the human motor neuron disease amyotrophic lateral sclerosis (Puls et al.
View Article and Find Full Text PDFThroughout development cell-cell interactions are of pivotal importance. Cells bind to each other or share information via secreted signaling molecules. To a large degree, these processes are modulated by post-translational modifications of membrane proteins.
View Article and Find Full Text PDFCholine acetyltransferase (ChAT) and acetylcholinesterase (AChE) are involved in acetylcholine synthesis and degradation at pre- and postsynaptic compartments, respectively. Here we show that their anterograde transport in Drosophila larval ganglion is microtubule-dependent and occurs in two different time profiles. AChE transport is constitutive while that of ChAT occurs in a brief pulse during third instar larva stage.
View Article and Find Full Text PDFThe visceral muscles of the Drosophila midgut consist of syncytia and arise by fusion of founder and fusion-competent myoblasts, as described for the somatic muscles. A single-step fusion results in the formation of binucleate circular midgut muscles, whereas a multiple-step fusion process produces the longitudinal muscles. A prerequisite for muscle fusion is the establishment of myoblast diversity in the mesoderm prior to the fusion process itself.
View Article and Find Full Text PDF