Publications by authors named "Kristina Sabaroedin"

Article Synopsis
  • - The study investigates how brain network architecture influences gray matter loss in individuals with psychotic disorders, aiming to uncover specific brain regions where this volume loss may initiate and spread over time.
  • - It includes a diverse sample of 534 participants, ranging from those experiencing early-stage psychosis to individuals with established schizophrenia, along with matched control groups.
  • - Researchers utilized advanced imaging techniques to analyze changes in gray matter volume over 3 and 12 months, focusing on the relationships between structurally and functionally connected brain areas.
View Article and Find Full Text PDF

Both psychotic illness and subclinical psychosis-like experiences (PLEs) have been associated with cortico-striatal dysfunction. This work has largely relied on a discrete parcellation of the striatum into distinct functional areas, but recent evidence suggests that the striatum comprises multiple overlapping and smoothly varying gradients (i.e.

View Article and Find Full Text PDF

Schizotypy is a multidimensional construct that captures a continuum of risk for developing schizophrenia-spectrum psychopathology. Existing 3-factor models of schizotypy, consisting of positive, negative, and disorganized dimensions have yielded mixed evidence of genetic continuity with schizophrenia using polygenic risk scores. Here, we propose an approach that involves splitting positive and negative schizotypy into more specific subdimensions that are phenotypically continuous with distinct positive symptoms and negative symptoms recognized in clinical schizophrenia.

View Article and Find Full Text PDF

Dopamine is known to play a role in the pathogenesis of psychotic symptoms, but the mechanisms driving dopaminergic dysfunction in psychosis remain unclear. Considerable attention has focused on the role of corticostriatothalamic (CST) circuits, given that they regulate and are modulated by the activity of dopaminergic cells in the midbrain. Preclinical studies have proposed multiple models of CST dysfunction in psychosis, each prioritizing different brain regions and pathophysiological mechanisms.

View Article and Find Full Text PDF

Dysfunction of fronto-striato-thalamic (FST) circuits is thought to contribute to dopaminergic dysfunction and symptom onset in psychosis, but it remains unclear whether this dysfunction is driven by aberrant bottom-up subcortical signalling or impaired top-down cortical regulation. We used spectral dynamic causal modelling of resting-state functional MRI to characterize the effective connectivity of dorsal and ventral FST circuits in a sample of 46 antipsychotic-naïve first-episode psychosis patients and 23 controls and an independent sample of 36 patients with established schizophrenia and 100 controls. We also investigated the association between FST effective connectivity and striatal 18F-DOPA uptake in an independent healthy cohort of 33 individuals who underwent concurrent functional MRI and PET.

View Article and Find Full Text PDF

Brain regions vary in their molecular and cellular composition, but how this heterogeneity shapes neuronal dynamics is unclear. Here, we investigate the dynamical consequences of regional heterogeneity using a biophysical model of whole-brain functional magnetic resonance imaging (MRI) dynamics in humans. We show that models in which transcriptional variations in excitatory and inhibitory receptor (E:I) gene expression constrain regional heterogeneity more accurately reproduce the spatiotemporal structure of empirical functional connectivity estimates than do models constrained by global gene expression profiles or MRI-derived estimates of myeloarchitecture.

View Article and Find Full Text PDF

Importance: Altered functional connectivity (FC) is a common finding in resting-state functional magnetic resonance imaging (rs-fMRI) studies of people with psychosis, yet how FC disturbances evolve in the early stages of illness, and how antipsychotic treatment influences these disturbances, remains unknown.

Objective: To investigate longitudinal FC changes in antipsychotic-naive and antipsychotic-treated patients with first-episode psychosis (FEP).

Design, Setting, And Participants: This secondary analysis of a triple-blind, randomized clinical trial was conducted over a 5-year recruitment period between April 2008 and December 2016 with 59 antipsychotic-naive patients with FEP receiving either a second-generation antipsychotic or a placebo pill over a treatment period of 6 months.

View Article and Find Full Text PDF

Changes in brain volume are a common finding in Magnetic Resonance Imaging (MRI) studies of people with psychosis and numerous longitudinal studies suggest that volume deficits progress with illness duration. However, a major unresolved question concerns whether these changes are driven by the underlying illness or represent iatrogenic effects of antipsychotic medication. In this study, 62 antipsychotic-naïve patients with first-episode psychosis (FEP) received either a second-generation antipsychotic (risperidone or paliperidone) or a placebo pill over a treatment period of 6 months.

View Article and Find Full Text PDF

Dysfunction of dorsal corticostriatal (CST) circuitry is thought to play an important role in psychosis. Here, we use multivariate analysis to characterize covariance between CST functional connectivity and psychosis-like experiences (PLEs) in non-clinical individuals. In 353 healthy adults (155 males), we use partial least squares (PLS) to identify latent variables (LV) describing covariance between seven PLE questionnaire measures and functional connectivity estimated between each of six striatal seed regions and the rest of the brain using multiband resting-state fMRI.

View Article and Find Full Text PDF

Animal neurophysiological studies have identified neural signals within dorsal frontoparietal areas that trace a perceptual decision by accumulating sensory evidence over time and trigger action upon reaching a threshold. Although analogous accumulation-to-bound signals are identifiable on extracranial human electroencephalography, their cortical origins remain unknown. Here neural metrics of human evidence accumulation, predictive of the speed of perceptual reports, were isolated using electroencephalography and related to dorsal frontoparietal network (dFPN) connectivity using diffusion and resting-state functional magnetic resonance imaging.

View Article and Find Full Text PDF

One of the most controversial procedures in the analysis of resting-state functional magnetic resonance imaging (rsfMRI) data is global signal regression (GSR): the removal, via linear regression, of the mean signal averaged over the entire brain. On one hand, the global mean signal contains variance associated with respiratory, scanner-, and motion-related artifacts, and its removal via GSR improves various quality-control metrics, enhances the anatomical specificity of functional-connectivity patterns, and can increase the behavioral variance explained by such patterns. On the other hand, GSR alters the distribution of regional signal correlations in the brain, can induce artifactual anticorrelations, may remove real neural signal, and can distort case-control comparisons of functional-connectivity measures.

View Article and Find Full Text PDF

Background: Psychotic symptoms are proposed to lie on a continuum, ranging from isolated psychosis-like experiences (PLEs) in nonclinical populations to frank disorder. Here, we investigated the neurobiological correlates of this continuum by examining whether functional connectivity of dorsal corticostriatal circuitry, which is disrupted in psychosis patients and individuals at high risk for psychosis, is associated with the severity of subclinical PLEs.

Methods: A community sample of 672 adults with no history of psychiatric or neurological illnesses completed a battery of seven questionnaires spanning various PLE domains.

View Article and Find Full Text PDF

Aerobic exercise (AE) interventions represent promising therapeutic approaches in disorders that compromise hippocampal integrity, but a more comprehensive account of the neural mechanisms stimulated by AE in the human brain is needed. We conducted a longitudinal pilot-study to assess the impact of a 12-week AE intervention on hippocampal structure and function in 10 healthy, human participants (50% females; 25-59 years). Using a novel combination of multimodal MRI techniques, we found significant increases in left hippocampal volume, Cornu Ammonis subfield area 1, NAA concentration and immediate verbal recall performance.

View Article and Find Full Text PDF