Publications by authors named "Kristina Ruuth"

The Gram-negative enteropathogen Yersinia pseudotuberculosis possesses a number of regulatory systems that detect cell envelope damage caused by noxious extracytoplasmic stresses. The CpxA sensor kinase and CpxR response regulator two-component regulatory system is one such pathway. Active Cpx signalling upregulates various factors designed to repair and restore cell envelope integrity.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is a tyrosine kinase receptor that is a clinical target of major interest in cancer. Mutations and rearrangements in trigger the activation of the encoded receptor and its downstream signaling pathways. mutations have been identified in both familial and sporadic neuroblastoma cases as well as in 30 to 40% of relapses, which makes ALK a bona fide target in neuroblastoma therapy.

View Article and Find Full Text PDF

Tumors with anaplastic lymphoma kinase (ALK) fusion rearrangements, including non-small-cell lung cancer and anaplastic large cell lymphoma, are highly sensitive to ALK tyrosine kinase inhibitors (TKIs), underscoring the notion that such cancers are addicted to ALK activity. Although mutations in ALK are heavily implicated in childhood neuroblastoma, response to the ALK TKI crizotinib has been disappointing. Embryonal tumors in patients with DNA repair defects such as Fanconi anemia (FA) often have a poor prognosis, because of lack of therapeutic options.

View Article and Find Full Text PDF

Numerous mutations have been observed in the Anaplastic Lymphoma Kinase (ALK) receptor tyrosine kinase (RTK) in both germline and sporadic neuroblastoma. Here, we have investigated the Y1278S mutation, observed in four patient cases, and its potential importance in the activation of the full length ALK receptor. Y1278S is located in the 1278-YRASYY-1283 motif of the ALK activation loop, which has previously been reported to be important in the activation of the ALK kinase domain.

View Article and Find Full Text PDF

Yersinia bacteria target Yop effector toxins to the interior of host immune cells by the Ysc-Yop type III secretion system. A YopN-TyeA heterodimer is central to controlling Ysc-Yop targeting activity. A + 1 frameshift event in the 3-prime end of yopN can also produce a singular secreted YopN-TyeA polypeptide that retains some regulatory function even though the C-terminal coding sequence of this YopN differs greatly from wild type.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) is an important molecular target in neuroblastoma. Although tyrosine kinase inhibitors abrogating ALK activity are currently in clinical use for the treatment of ALK-positive (ALK(+)) disease, monotherapy with ALK tyrosine kinase inhibitors may not be an adequate solution for ALK(+) neuroblastoma patients. Increased expression of the gene encoding the transcription factor MYCN is common in neuroblastomas and correlates with poor prognosis.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK) has been demonstrated to be deregulated in sporadic as well as in familiar cases of neuroblastoma (NB). Whereas ALK-fusion proteins are common in lymphoma and lung cancer, there are few reports of ALK rearrangements in NB indicating that ALK mainly exerts its oncogenic capacity via activating mutations and/or overexpression in this tumor type. In this study, 332 NB tumors and 13 cell lines were screened by high resolution single nucleotide polymorphism microarray.

View Article and Find Full Text PDF

Activation of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase is a key oncogenic mechanism in a growing number of tumor types. In the majority of cases, ALK is activated by fusion with a dimerizing partner protein as a result of chromosomal translocation events, most studied in the case of the nucleophosmin-ALK and echinoderm microtubule-associated protein-like 4-ALK oncoproteins. It is now also appreciated that the full-length ALK receptor can be activated by point mutations and by deletions within the extracellular domain, such as those observed in neuroblastoma.

View Article and Find Full Text PDF

Neuroblastoma is a childhood extracranial solid tumour that is associated with a number of genetic changes. Included in these genetic alterations are mutations in the kinase domain of the anaplastic lymphoma kinase (ALK) receptor tyrosine kinase (RTK), which have been found in both somatic and familial neuroblastoma. In order to treat patients accordingly requires characterisation of these mutations in terms of their response to ALK tyrosine kinase inhibitors (TKIs).

View Article and Find Full Text PDF

Mutations in the kinase domain of ALK (anaplastic lymphoma kinase) have recently been shown to be important for the progression of the childhood tumour neuroblastoma. In the present study we investigate six of the putative reported constitutively active ALK mutations, in positions G1128A, I1171N, F1174L, R1192P, F1245C and R1275Q. Our analyses were performed in cell-culture-based systems with both mouse and human ALK mutant variants and subsequently in a Drosophila melanogaster model system.

View Article and Find Full Text PDF

Activating mutations in the kinase domain of anaplastic lymphoma kinase (ALK) have recently been shown to be an important determinant in the genetics of the childhood tumor neuroblastoma. Here we discuss an in-depth analysis of one of the reported gain-of-function ALK mutations-ALK(I1250T)-identified in the germ line DNA of one patient. Our analyses were performed in cell culture-based systems and subsequently confirmed in a Drosophila model.

View Article and Find Full Text PDF

Type I interferons constitute a family of pleiotropic cytokines that have a key role in both adaptive and innate immunity. The interferon signalling pathways mediate transcriptional regulation of hundreds of genes, which result in mRNA degradation, decreased protein synthesis, cell cycle inhibition and induction of apoptosis. To elucidate regulatory networks important for interferon induced cell death, we generated interferon resistant U937 cells by selection in progressively increasing concentrations of interferon-α (IFN-α).

View Article and Find Full Text PDF

Mutations in the kinase domain of the ALK kinase have emerged recently as important players in the genetics of the childhood tumor neuroblastoma. Here, we report the appearance of a novel ALK mutation in neuroblastoma, correlating with aggressive tumor behavior. Analyses of genomic DNA from biopsy samples initially showed ALK sequence to be wild type.

View Article and Find Full Text PDF

Epitope reactivity of multiple sclerosis (MS) plasma antibodies against the Epstein-Barr virus protein EBNA-1 and its association with HLA DRB1*1501 status was investigated in a case-referent study. Based on EBNA-1 fragment reactivity and the effect of peptide blocking, four 29-36 amino acid long EBNA-1 fragments were selected for detailed studies. MS cases had increased antibody reactivity against several EBNA-1 domains, of which antibodies against EBNA-1 (amino acid 385-420) in HLA DRB1*1501 positive individuals were associated with a 24-fold risk increase for MS.

View Article and Find Full Text PDF

Susceptibility to cell death is a prerequisite for the elimination of tumour cells by cytotoxic immune cells, chemotherapy or irradiation. Activation of the death receptor Fas is critical for the regulation of immune cell homeostasis and efficient killing of tumour cells by apoptosis. To define the molecular changes that occur during selection for insensitivity to Fas-induced apoptosis, a resistant variant of the U937 cell line was established.

View Article and Find Full Text PDF

Background: Acquired resistance to apoptosis is a critical event in tumour development and in insensitivity toward therapy. To investigate resistance mechanisms to Fas/CD95/Apo-1-induced apoptosis, a Fas ligand-resistant variant of the U937 cell line was generated.

Results: Selection for Fas resistance resulted in a partial cross-resistance to TRAIL and TNF-alpha.

View Article and Find Full Text PDF

Background: Interferon-alpha (IFN-alpha) subtypes bind to the same receptor and are expected to have the same biological functions. Whether or not leukocyte IFN, containing six major IFN-alpha proteins had the same anti-tumor effect as one subtype, recombinant IFN-alpha2b, was investigated.

Materials And Methods: Three melanoma lines were treated with both types of IFN, and the effect on proliferation and survival was estimated both after short-term and prolonged treatment.

View Article and Find Full Text PDF