Activation of the innate immune pattern recognition receptor NOD2 by the bacterial muramyl-dipeptide peptidoglycan fragment triggers recruitment of the downstream adaptor kinase RIP2, eventually leading to NF-κB activation and proinflammatory cytokine production. Here we show that full-length RIP2 can form long filaments mediated by its caspase recruitment domain (CARD), in common with other innate immune adaptor proteins. We further show that the NOD2 tandem CARDs bind to one end of the RIP2 CARD filament, suggesting a mechanism for polar filament nucleation by activated NOD2.
View Article and Find Full Text PDFThe use of small rotors capable of very fast magic-angle spinning (MAS) in conjunction with proton dilution by perdeuteration and partial reprotonation at exchangeable sites has enabled the acquisition of resolved, proton detected, solid-state NMR spectra on samples of biological macromolecules. The ability to detect the high-gamma protons, instead of carbons or nitrogens, increases sensitivity. In order to achieve sufficient resolution of the amide proton signals, rotors must be spun at the maximum rate possible given their size and the proton back-exchange percentage tuned.
View Article and Find Full Text PDFWe present a systematic study of the effect of the level of exchangeable protons on the observed amide proton linewidth obtained in perdeuterated proteins. Decreasing the amount of D(2)O employed in the crystallization buffer from 90 to 0%, we observe a fourfold increase in linewidth for both (1)H and (15)N resonances. At the same time, we find a gradual increase in the signal-to-noise ratio (SNR) for (1)H-(15)N correlations in dipolar coupling based experiments for H(2)O concentrations of up to 40%.
View Article and Find Full Text PDFAtomic-level structural information on alphaB-Crystallin (alphaB), a prominent member of the small heat-shock protein family, has been a challenge to obtain due its polydisperse oligomeric nature. We show that magic-angle spinning solid-state NMR can be used to obtain high-resolution information on an approximately 580-kDa human alphaB assembled from 175-residue 20-kDa subunits. An approximately 100-residue alpha-crystallin domain is common to all small heat-shock proteins, and solution-state NMR was performed on two different alpha-crystallin domain constructs isolated from alphaB.
View Article and Find Full Text PDFMany MAS (magic angle spinning) solid-state NMR investigations of biologically relevant protein samples are hampered by poor resolution, particularly in the 15N chemical shift dimension. We show that dynamics in the nanosecond-microsecond time scale in solid-state samples can induce significant line broadening of 15N resonances in solid-state NMR experiments. Averaging of 15NH(alpha/beta) multiplet components due to 1H decoupling induces effective relaxation of the 15N coherence in case the N-H spin pair undergoes significant motion.
View Article and Find Full Text PDFA simple spectroscopic filtering technique is presented that may aid the assignment of (13)C and (15)N resonances of methyl-containing amino-acids in solid-state magic-angle spinning (MAS) NMR. A filtering block that selects methyl resonances is introduced in two-dimensional (2D) (13)C-homonuclear and (15)N-(13)C heteronuclear correlation experiments. The 2D (13)C-(13)C correlation spectra are recorded with the methyl filter implemented prior to a (13)C-(13)C mixing step.
View Article and Find Full Text PDFAmino-acid selective magic-angle spinning (MAS) NMR experiments can aid the assignment of ambiguous cross-peaks in crowded spectra of solid proteins. In particular for larger proteins, data analysis can be hindered by severe resonance overlap. In such cases, filtering techniques may provide a good alternative to site-specific spin-labeling to obtain unambiguous assignments that can serve as starting points in the assignment procedure.
View Article and Find Full Text PDFSubunit B8 from ubiquinone oxidoreductase (complex I) (CI-B8) is one of several nuclear-encoded supernumerary subunits that are not present in bacterial complex I. Its solution structure shows a thioredoxin fold with highest similarities to the human thioredoxin mutant C73S and thioredoxin 2 from Anabeana sp. Interestingly, these proteins contain active sites in the same area, where the disulfide bond of oxidized CI-B8 is located.
View Article and Find Full Text PDFIn this paper, a three-dimensional (3D) NMR-based approach for the determination of the fold of moderately sized proteins by solid-state magic-angle spinning (MAS) NMR is presented and applied to the alpha-spectrin SH3 domain. This methodology includes the measurement of multiple (13)C-(13)C distance restraints on biosynthetically site-directed (13)C-enriched samples, obtained by growing bacteria on [2-(13)C]glycerol and [1,3-(13)C]glycerol. 3D (15)N-(13)C-(13)C dipolar correlation experiments were applied to resolve overlap of signals, in particular in the region where backbone carbon-carbon correlations of the C(alpha)-C(alpha), CO-CO, C(alpha)-CO, and CO-C(alpha) type appear.
View Article and Find Full Text PDFIn this communication, we demonstrate the feasibility of 1H detection in MAS solid-state NMR for a microcrystalline, uniformly 2H,15N-labeled sample of a SH3 domain of chicken alpha-spectrin, using pulsed field gradients for suppression of water magnetization. Today, B0 gradients are employed routinely in solution-state NMR for coherence order selection and solvent suppression. We suggest to use gradients to purge water magnetization which cannot be suppressed using conventional water suppression schemes.
View Article and Find Full Text PDFIn this paper, we present a strategy for the (1)H(N) resonance assignment in solid-state magic-angle spinning (MAS) NMR, using the alpha-spectrin SH3 domain as an example. A novel 3D triple resonance experiment is presented that yields intraresidue H(N)-N-C(alpha) correlations, which was essential for the proton assignment. For the observable residues, 52 out of the 54 amide proton resonances were assigned from 2D ((1)H-(15)N) and 3D ((1)H-(15)N-(13)C) heteronuclear correlation spectra.
View Article and Find Full Text PDFIn this communication, we demonstrate the feasibility of obtaining long-range (1)H-(1)H distance information by MAS solid-state NMR for a microcrystalline, uniformly (2)H,(15)N-labeled sample of a SH3 domain of chicken alpha-spectrin. The experiments yield NOESY-type spectra and rely on the favorable dispersion of the (15)N chemical shifts of the protein backbone. Perdeuteration of nonexchangeable sites is employed to simplify proton spin systems and to obtain multiple structural information.
View Article and Find Full Text PDFThe determination of a representative set of protein structures is a chief aim in structural genomics. Solid-state NMR may have a crucial role in structural investigations of those proteins that do not easily form crystals or are not accessible to solution NMR, such as amyloid systems or membrane proteins. Here we present a protein structure determined by solid-state magic-angle-spinning (MAS) NMR.
View Article and Find Full Text PDF