Publications by authors named "Kristina Oresic"

Ricin is a potent A-B toxin that is transported from the cell surface to the cytosol, where it inactivates ribosomes, leading to cell death. Ricin enters cells via endocytosis, where only a minute number of ricin molecules reach the endoplasmic reticulum (ER) lumen. Subsequently, the ricin A chain traverses the ER bilayer by a process referred to as dislocation or retrograde translocation to gain access to the cytosol.

View Article and Find Full Text PDF

ER quality control consists of monitoring protein folding and targeting misfolded proteins for proteasomal degradation. ER stress results in an unfolded protein response (UPR) that selectively upregulates proteins involved in protein degradation, ER expansion, and protein folding. Given the efficiency in which misfolded proteins are degraded, there likely exist cellular factors that enhance the export of proteins across the ER membrane.

View Article and Find Full Text PDF

The human cytomegalovirus proteins US2 and US11 have co-opted endoplasmic reticulum (ER) quality control to facilitate the destruction of major histocompatibility complex class I heavy chains. The class I heavy chains are dislocated from the ER to the cytosol, where they are deglycosylated and subsequently degraded by the proteasome. We examined the role of TRAM1 (translocating chain-associated membrane protein-1) in the dislocation of class I molecules using US2- and US11-expressing cells.

View Article and Find Full Text PDF

NCLs (neuronal ceroid lipofuscinoses), a group of inherited neurodegenerative lysosomal storage diseases that predominantly affect children, are the result of autosomal recessive mutations within one of the nine cln genes. The wild-type cln gene products are composed of membrane and soluble proteins that localize to the lysosome or the ER (endoplasmic reticulum). However, the destiny of the Cln variants has not been fully characterized.

View Article and Find Full Text PDF

Inhibition of cell-surface expression of major histocompatibility complex class I molecules by human cytomegalovirus (HCMV, a beta-herpesvirus) promotes escape from recognition by CD8+ cytotoxic T cells. The HCMV US2 and US11 gene products induce class I downregulation during the early phase of HCMV infection by facilitating the degradation of class I heavy chains. The HCMV proteins promote the transport of the class I heavy chains across the endoplasmic reticulum (ER) membrane into the cytosol by a process referred to as 'dislocation', which is then followed by proteasome degradation.

View Article and Find Full Text PDF

Human cytomegalovirus down-regulates cell surface class I major histocompatibility (MHC) molecules, thus allowing the virus to proliferate while avoiding detection by CD8+ T lymphocytes. The unique short gene product US2 is a 199-amino acid type I endoplasmic reticulum glycoprotein that modulates surface expression of class I MHC products by targeting class I heavy chains for dislocation from the endoplasmic reticulum to the cytosol, where they undergo proteasomal degradation. Although the mechanism by which this viral protein targets class I heavy chains for destruction remains unclear, the putative US2 cytoplasmic tail comprised of only 14 residues is known to play a functional role.

View Article and Find Full Text PDF

Increasing evidence suggests that lysosomal proteases are actively involved in apoptosis. Using HeLa cells as the model system, we show that selective lysosome disruption with L-leucyl-L-leucine methyl ester results in apoptosis, characterized by translocation of lysosomal proteases into the cytosol and by the cleavage of a proapoptotic Bcl-2-family member Bid. Apoptosis and Bid cleavage, but not translocation of lysosomal proteases to the cytosol, could be prevented by 15 microM L-trans-epoxysuccinyl(OEt)-Leu-3-methylbutylamide, an inhibitor of papain-like cysteine proteases.

View Article and Find Full Text PDF

Apoptosis or programmed cell death is the major mechanism used by multicellular organisms to remove infected, excessive and potentially dangerous cells. Cysteine proteases from the caspase family play a crucial role in the process. However, there is increasing evidence that lysosomal proteases are also involved in apoptosis.

View Article and Find Full Text PDF