Publications by authors named "Kristina M Giorda"

Haplotyping of human chromosomes is a prerequisite for cataloguing the full repertoire of genetic variation. We present a microfluidics-based, linked-read sequencing technology that can phase and haplotype germline and cancer genomes using nanograms of input DNA. This high-throughput platform prepares barcoded libraries for short-read sequencing and computationally reconstructs long-range haplotype and structural variant information.

View Article and Find Full Text PDF

The endoplasmic reticulum (ER) is organized in part by adapter proteins that nucleate the formation of large protein complexes. Tetratricopeptide repeats (TPR) are well studied protein structural motifs that support intermolecular protein-protein interactions. TMTC1 and TMTC2 were identified by an in silico search as TPR-containing proteins possessing N-terminal ER targeting signal sequences and multiple hydrophobic segments, suggestive of polytopic membrane proteins that are targeted to the secretory pathway.

View Article and Find Full Text PDF

Viruses are intracellular parasites that must access the host cell machinery to propagate. Viruses hijack the host cell machinery to help with entry, replication, packaging, and release of progeny to infect new cells. To carry out these diverse functions, viruses often transform the cellular environment using viroporins, a growing class of viral-encoded membrane proteins that promote viral proliferation.

View Article and Find Full Text PDF

Nonenveloped viruses are generally released from the cell by the timely lysis of host cell membranes. SV40 has been used as a model virus for the study of the lytic nonenveloped virus life cycle. The expression of SV40 VP4 at later times during infection is concomitant with cell lysis.

View Article and Find Full Text PDF

For nonenveloped viruses such as Simian Virus 40, the mechanism used to translocate viral components across membranes is poorly understood. Previous results indicated that the minor structural proteins, VP2 and VP3, might act as membrane proteins during infection. Here, purified VP2 and VP3 were found to form pores in host cell membranes.

View Article and Find Full Text PDF

Simian virus 40 (SV40) appears to initiate cell lysis by expressing the late viral protein VP4 at the end of infection to aid in virus dissemination. To investigate the contribution of VP4 to cell lysis, VP4 was expressed in mammalian cells where it was predominantly observed along the nuclear periphery. The integrity of the nuclear envelope was compromised in these cells, resulting in the mislocalization of a soluble nuclear marker.

View Article and Find Full Text PDF

Nonenveloped viruses are generally released by the timely lysis of the host cell by a poorly understood process. For the nonenveloped virus SV40, virions assemble in the nucleus and then must be released from the host cell without being encapsulated by cellular membranes. This process appears to involve the well-controlled insertion of viral proteins into host cellular membranes rendering them permeable to large molecules.

View Article and Find Full Text PDF