Functional recovery following incomplete spinal cord injury (SCI) depends on the rewiring of motor circuits during which supraspinal connections form new contacts onto spinal relay neurons. We have recently identified a critical role of the presynaptic organizer FGF22 for the formation of new synapses in the remodeling spinal cord. Here, we now explore whether and how targeted overexpression of FGF22 can be used to mitigate the severe functional consequences of SCI.
View Article and Find Full Text PDFDescending serotonergic (5-HT) projections originating from the raphe nuclei form an important input to the spinal cord that control basic locomotion. The molecular signals that control this projection pattern are currently unknown. Here, we identify Semaphorin7A (Sema7A) as a critical cue that restricts serotonergic innervation in the spinal cord.
View Article and Find Full Text PDFSmall molecule inhibitors are prime reagents for studies in microtubule cytoskeleton research, being applicable across a range of biological models and not requiring genetic engineering. However, traditional chemical inhibitors cannot be experimentally applied with spatiotemporal precision suiting the length and time scales inherent to microtubule-dependent cellular processes. We have synthesised photoswitchable paclitaxel-based microtubule stabilisers, whose binding is induced by photoisomerisation to their metastable state.
View Article and Find Full Text PDFSpinal cord injury is a devastating condition that is followed by long and often unsuccessful recovery after trauma. The state of the art approach to manage paralysis and concomitant impairments is rehabilitation, which is the only strategy that has proven to be effective and beneficial for the patients over the last decades. How rehabilitation influences the remodeling of spinal axonal connections in patients is important to understand, in order to better target these changes and define the optimal timing and onset of training.
View Article and Find Full Text PDFRecent reports suggest that rehabilitation measures that increase physical activity of patients can improve functional outcome after incomplete spinal cord injuries (iSCI). To investigate the structural basis of exercise-induced recovery, we examined local and remote consequences of voluntary wheel training in spinal cord injured female mice. In particular, we explored how enhanced voluntary exercise influences the neuronal and glial response at the lesion site as well as the rewiring of supraspinal tracts after iSCI.
View Article and Find Full Text PDFThe remodeling of axonal circuits after injury requires the formation of new synaptic contacts to enable functional recovery. Which molecular signals initiate such axonal and synaptic reorganisation in the adult central nervous system is currently unknown. Here, we identify FGF22 as a key regulator of circuit remodeling in the injured spinal cord.
View Article and Find Full Text PDFSwiprosin-1/EFhd2 (EFhd2) is a cytoskeletal Ca2+ sensor protein strongly expressed in the brain. It has been shown to interact with mutant tau, which can promote neurodegeneration, but nothing is known about the physiological function of EFhd2 in the nervous system. To elucidate this question, we analyzed EFhd2-/-/lacZ reporter mice and showed that lacZ was strongly expressed in the cortex, the dentate gyrus, the CA1 and CA2 regions of the hippocampus, the thalamus, and the olfactory bulb.
View Article and Find Full Text PDFBackground: Different pools and functions have recently been attributed to spontaneous and evoked vesicle release. Despite the well-established function of evoked release, the neuronal information transmission, the origin as well as the function of spontaneously fusing synaptic vesicles have remained elusive. Recently spontaneous release was found to e.
View Article and Find Full Text PDFEffects of the antidepressant fluoxetine in therapeutic concentration on stimulation-dependent synaptic vesicle recycling were examined in cultured rat hippocampal neurons using fluorescence microscopy. Short-term administration of fluoxetine neither inhibited exocytosis nor endocytosis of RRP vesicular membranes. On the contrary, acute application of the drug markedly increased the size of the recycling pool of hippocampal synapses.
View Article and Find Full Text PDFConcurrent imaging of spectrally distinct fluorescence probes has become an important method for live-cell microscopy experiments in many biological disciplines. The technique enables the identification of a multitude of causal relationships. However, interactions between fluorescent dyes beyond an obvious overlap of their fluorescent spectra are often neglected.
View Article and Find Full Text PDFSchwann cells produce myelin sheaths and thereby permit rapid saltatory conductance in the vertebrate peripheral nervous system. Their stepwise differentiation from neural crest cells is driven by a defined set of transcription factors. How this is linked to chromatin changes is not well understood.
View Article and Find Full Text PDF