Many habitat-specialist organisms occur in distinct, patchy habitat, yet do not occupy all patches, and an important question is why apparently suitable habitat remains unoccupied. We examined factors influencing patch occupancy in near-threatened, little-known Diademed Plovers (Phegornis mitchellii), arguably the bird most specialized to life in High Andean peatlands. Andean peatlands are well-suited to occupancy modelling because they are discrete patches of humid habitat within a matrix of high-altitude steppe.
View Article and Find Full Text PDFBackground: Examining direct and indirect effects on reproduction at multiple scales allows for a broad understanding of species' resilience to environmental change. We examine how the fecundity of the mountain chickadee (), a secondary cavity-nesting, insectivorous bird, varied in relation to factors at three scales: regional weather conditions, regional- and site-level food availability, site-level community dynamics, and nest-level cavity characteristics. We hypothesized that earlier laying dates and higher fecundity (clutch size, nest survival, brood size) would be associated with milder climatic conditions, increased food from insect outbreaks, lower densities of conspecifics and nest predators (red squirrel; ), and safer (smaller, higher) cavities.
View Article and Find Full Text PDFWoodpeckers and other excavators create most of the holes used by secondary cavity nesters (SCNs) in North American temperate mixedwood forests, but the degree to which excavators release SCNs from nest-site limitation is debated. Our goal was to quantify how excavators maintain the diversity and abundance of secondary cavity nesters in a temperate forest through the creation of tree cavities. We examined the short- and long-term (legacy) effects of excavators (principally woodpeckers, but also red-breasted nuthatches and black-capped chickadees) on forest biodiversity using longitudinal monitoring data (1,732 nest cavities, 25 sites, 16 years) in British Columbia, Canada.
View Article and Find Full Text PDFTree cavities are a critical multi-annual resource that can limit populations and structure communities of cavity-nesting vertebrates. We examined the regional and local factors influencing lifetime productivity (number and richness of occupants) of individual tree cavities across two divergent forest ecosystems: temperate mixed forest in Canada and subtropical Atlantic Forest, Argentina. We predicted that (1) species would accumulate more rapidly within cavities in the species-rich system (Argentina: 76 species) than the poorer system (Canada: 31 species), (2) cavity characteristics associated with nest-site selection in short-term studies would predict lifetime cavity productivity, and (3) species would accumulate more rapidly across highly used cavities than across cavities used only once, and in Argentina than in Canada.
View Article and Find Full Text PDFLogging often reduces taxonomic diversity in forest communities, but little is known about how this biodiversity loss affects the resilience of ecosystem functions. We examined how partial logging and clearcutting of temperate forests influenced functional diversity of birds that nest in tree cavities. We used point-counts in a before-after-control-impact design to examine the effects of logging on the value, range, and density of functional traits in bird communities in Canada (21 species) and Chile (16 species).
View Article and Find Full Text PDFNetwork analysis offers insight into the structure and function of ecological communities, but little is known about how empirical networks change over time during perturbations. "Nest webs" are commensal networks that link secondary cavity-nesting vertebrates (e.g.
View Article and Find Full Text PDF