RNA plays an important role in many biological processes which are crucial for cell survival, and it has been suggested that it may be possible to inhibit individual processes involved in many diseases by targeting specific sequences of RNA. The aim of this work is to determine the affinity of novel 3,9-disubstited acridine derivative 1 with three different RNA molecules, namely single stranded poly(rA), double stranded homopolymer poly(rAU) and triple stranded poly(rUAU). The results of the absorption titration assays show that the binding constant of the novel derivative to the RNA molecules was in the range of 1.
View Article and Find Full Text PDFDNA topoisomerases regulate conformational changes in DNA topology during normal cell growth, such as replication, transcription, recombination, and repair, and may be targeted for anticancer drugs. A DNA topology assay was used to investigate DNA-damaging/protective activities of extracts from Habanero Red (HR), Habanero Maya Red (HMR), Trinidad Moruga Scorpion (TMS), Jalapeno (J), Serrano pepper (SP), Habanero Red Savina (HRS), Bhut Jolokia (BJ), and Jamaica Rosso (JR) peppers, demonstrating their inhibitory effect on the relaxation of pBR by Topo I. DNA topoisomerase II (Topo II) is proven therapeutic target of anticancer drugs.
View Article and Find Full Text PDFA series of novel 3,9-disubstituted acridines were synthesized and their biological potential was investigated. The synthetic plan consists of eight reaction steps, which produce the final products, derivatives -, in a moderate yield. The principles of cheminformatics and computational chemistry were applied in order to study the relationship between the physicochemical properties of the 3,9-disubstituted acridines and their biological activity at a cellular and molecular level.
View Article and Find Full Text PDF