This paper focuses on image and video content analysis of handball scenes and applying deep learning methods for detecting and tracking the players and recognizing their activities. Handball is a team sport of two teams played indoors with the ball with well-defined goals and rules. The game is dynamic, with fourteen players moving quickly throughout the field in different directions, changing positions and roles from defensive to offensive, and performing different techniques and actions.
View Article and Find Full Text PDFHuman Action Recognition (HAR) is a challenging task used in sports such as volleyball, basketball, soccer, and tennis to detect players and recognize their actions and teams' activities during training, matches, warm-ups, or competitions. HAR aims to detect the person performing the action on an unknown video sequence, determine the action's duration, and identify the action type. The main idea of HAR in sports is to monitor a player's performance, that is, to detect the player, track their movements, recognize the performed action, compare various actions, compare different kinds and skills of acting performances, or make automatic statistical analysis.
View Article and Find Full Text PDF