Techniques for studying the clearance of bacterial infections are critical for advances in understanding disease states, immune cell effector functions, and novel antimicrobial therapeutics. Intracellular killing of by neutrophils can be monitored using a strain stably expressing GFP, a fluorophore that is quenched when exposed to the reactive oxygen species (ROS) present in the phagolysosome. Here, we expand upon this method by developing a bi-fluorescent killing assay for use Conjugating with a stable secondary fluorescent marker enables the separation of infected cell samples into three populations: cells that have not engaged in phagocytosis, cells that have engulfed and killed , and cells that have viable internalized .
View Article and Find Full Text PDFThe development and use of murine myeloid progenitor cell lines that are conditionally immortalized through expression of HoxB8 has provided a valuable tool for studies of neutrophil biology. Recent work has extended the utility of HoxB8-conditional progenitors to the setting via their transplantation into irradiated mice. Here, we describe the isolation of HoxB8-conditional progenitor cell lines that are unique in their ability to engraft in the naïve host in the absence of conditioning of the hematopoietic niche.
View Article and Find Full Text PDFCantu syndrome (CS) is characterized by multiple vascular and cardiac abnormalities including vascular dilation and tortuosity, systemic hypotension, and cardiomegaly. The disorder is caused by gain-of-function (GOF) mutations in genes encoding pore-forming (Kir6.1, KCNJ8) and accessory (SUR2, ABCC9) ATP-sensitive potassium (KATP) channel subunits.
View Article and Find Full Text PDFAngiogenesis, new blood vessel formation from preexisting vessels, is critical for solid tumor growth. As such, there have been efforts to inhibit angiogenesis as a means to obstruct tumor growth. However, antiangiogenic therapy faces major challenges to the selective targeting of tumor-associated-vessels, as current antiangiogenic targets also disrupt steady-state vessels.
View Article and Find Full Text PDFGenetic circuits have the potential to improve a broad range of metabolic engineering processes and address a variety of medical and environmental challenges. However, in order to engineer genetic circuits that can meet the needs of these real-world applications, genetic sensors that respond to relevant extrinsic and intrinsic signals must be implemented in complex genetic circuits. In this work, we construct the first AND and NAND gates that respond to temperature and pH, two signals that have relevance in a variety of real-world applications.
View Article and Find Full Text PDFRNA-based temperature sensing is common in bacteria that live in fluctuating environments. Most naturally-occurring RNA thermosensors are heat-inducible, have long sequences, and function by sequestering the ribosome binding site in a hairpin structure at lower temperatures. Here, we demonstrate the de novo design of short, heat-repressible RNA thermosensors.
View Article and Find Full Text PDF