The emergence of novel SARS coronavirus 2 (SARS-CoV-2) in 2019 has triggered an ongoing global pandemic of severe pneumonia-like disease designated as coronavirus disease 2019 (COVID-19). To date, more than 2.1 million confirmed cases and 139,500 deaths have been reported worldwide, and there are currently no medical countermeasures available to prevent or treat the disease.
View Article and Find Full Text PDFInnate immunity represents the human immune system's first line of defense against a pathogenic intruder and is initiated by the recognition of conserved molecular structures known as pathogen-associated molecular patterns (PAMPs) by specialized cellular sensors, called pattern recognition receptors (PRRs). Human immunodeficiency virus type 1 (HIV-1) is a unique human RNA virus that causes acquired immunodeficiency syndrome (AIDS) in infected individuals. During the replication cycle, HIV-1 undergoes reverse transcription of its RNA genome and integrates the resulting DNA into the human genome.
View Article and Find Full Text PDFInfluenza A virus (IAV) is a human respiratory pathogen that causes yearly global epidemics, as well as sporadic pandemics due to human adaptation of pathogenic strains. Efficient replication of IAV in different species is, in part, dictated by its ability to exploit the genetic environment of the host cell. To investigate IAV tropism in human cells, we evaluated the replication of IAV strains in a diverse subset of epithelial cell lines.
View Article and Find Full Text PDFMany viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4 +T cells revealed that -deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) deficient for DGCR8, a key component of the microprocessor complex, present strong differentiation defects. However, the exact reasons impairing their commitment remain elusive. The analysis of newly generated mutant mESCs revealed that DGCR8 is essential for the exit from the pluripotency state.
View Article and Find Full Text PDFViral infection initiates an array of changes in host gene expression. Many viruses dampen host protein expression and attempt to evade the host anti-viral defense machinery. Host gene expression is suppressed at several stages of host messenger RNA (mRNA) formation including selective degradation of translationally competent messenger RNAs.
View Article and Find Full Text PDFThe Epstein-Barr virus (EBV)-encoded noncoding RNAs EBER1 and EBER2 are highly abundant through all four latency stages of EBV infection (III-II-I-0) and have been associated with an oncogenic phenotype when expressed in cell lines cultured in vitro. In vivo, EBV-infected B cells derived from freshly isolated lymphocytes show that EBER1/2 deletion does not impair viral latency. Based on published quantitative proteomics data from BJAB cells expressing EBER1 and EBER2, we propose that the EBERs, through their activation of AKT in a B-cell-specific manner, are a functionally redundant backup of latent membrane protein 1 (LMP1)-an essential oncoprotein in EBV-associated malignancies, with a main role in AKT activation.
View Article and Find Full Text PDFDuring microRNA (miRNA) biogenesis, the Microprocessor complex (MC), composed minimally of Drosha, an RNaseIII enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary-miRNA (pri-miRNA) to release the pre-miRNA stem-loop structure. Size-exclusion chromatography of the MC, isolated from mammalian cells, suggested multiple copies of one or both proteins in the complex. However, the exact stoichiometry was unknown.
View Article and Find Full Text PDFDuring miRNA biogenesis, the microprocessor complex (MC), which is composed minimally of Drosha, an RNase III enzyme, and DGCR8, a double-stranded RNA-binding protein, cleaves the primary miRNA (pri-miRNA) in order to release the pre-miRNA stem-loop structure. Using phosphoproteomics, we mapped 23 phosphorylation sites on full-length human DGCR8 expressed in insect or mammalian cells. DGCR8 can be phosphorylated by mitogenic ERK/MAPK, indicating that DGCR8 phosphorylation may respond to and integrate extracellular cues.
View Article and Find Full Text PDFThe chaperone Hsp90 is required for the correct folding and maturation of certain "client proteins" within all cells. Hsp90-mediated folding is particularly important in cancer cells, because upregulated or mutant oncogenic proteins are often Hsp90 clients. Hsp90 inhibitors thus represent a route to anticancer agents that have the potential to be active against several different types of cancer.
View Article and Find Full Text PDFNusG is an essential transcription factor in Escherichia coli that is capable of increasing the overall rate of transcription. Transcript elongation by RNA polymerase (RNAP) is frequently interrupted by pauses of varying durations, and NusG is known to decrease the occupancy of at least some paused states. However, it has not been established whether NusG enhances transcription chiefly by (1) increasing the rate of elongation between pauses, (2) reducing the lifetimes of pauses, or (3) reducing the rate of entry into paused states.
View Article and Find Full Text PDFSingle-molecule techniques have advanced our understanding of transcription by RNA polymerase (RNAP). A new arsenal of approaches, including single-molecule fluorescence, atomic-force microscopy, magnetic tweezers, and optical traps (OTs) have been employed to probe the many facets of the transcription cycle. These approaches supply fresh insights into the means by which RNAP identifies a promoter, initiates transcription, translocates and pauses along the DNA template, proofreads errors, and ultimately terminates transcription.
View Article and Find Full Text PDFInterdisciplinary work in the life sciences at the boundaries of biology, chemistry and physics is making enormous strides. This progress was showcased at the recent Single Molecule Biophysics conference.
View Article and Find Full Text PDFTranscriptional pausing by RNA polymerase (RNAP) plays an important role in the regulation of gene expression. Defined, sequence-specific pause sites have been identified biochemically. Single-molecule studies have also shown that bacterial RNAP pauses frequently during transcriptional elongation, but the relationship of these "ubiquitous" pauses to the underlying DNA sequence has been uncertain.
View Article and Find Full Text PDFSpectrin repeats are triple-helical coiled-coil domains found in many proteins that are regularly subjected to mechanical stress. We used atomic force microscopy technique and steered molecular dynamics simulations to study the behavior of a wild-type spectrin repeat and two mutants. The experiments indicate that spectrin repeats can form stable unfolding intermediates when subjected to external forces.
View Article and Find Full Text PDF