Publications by authors named "Kristina Eissenberger"

In this study, four different plastic materials usually used in the agricultural sector (polystyrene film (PS), polyethylene terephthalate film (PET), low-density polyethylene film (LDPE) and linear low-density polyethylene film (LLDPE)) were subjected to different abiotic treatments, including photo-oxidation (ultraviolet and e-beam radiation) and thermochemical treatments, to enhance polymer degradation. The extensive use of these polymers leads to large amounts of plastic waste generation, including small plastic pieces, known as microplastics, which affect the quality of the agricultural environment, including soil fertility and quality. Therefore, polymer degradation strategies are needed to effectively reduce plastic waste to protect the agricultural sector.

View Article and Find Full Text PDF

The depletion of fossil resources and the growing demand for plastic waste reduction has put industries and academic researchers under pressure to develop increasingly sustainable packaging solutions that are both functional and circularly designed. In this review, we provide an overview of the fundamentals and recent advances in biobased packaging materials, including new materials and techniques for their modification as well as their end-of-life scenarios. We also discuss the composition and modification of biobased films and multilayer structures, with particular attention to readily available drop-in solutions, as well as coating techniques.

View Article and Find Full Text PDF

Human disease outbreaks caused by pathogenic Escherichia coli are increasingly associated with the consumption of contaminated fresh produce. Internalization of enteroaggregative/enterohemorrhagic E. coli (EAEC/EHEC) strains into plant tissues may present a serious threat to public health.

View Article and Find Full Text PDF

Increasing numbers of outbreaks caused by enterohemorrhagic Escherichia coli (EHEC) are associated with the consumption of contaminated fresh produce. The contamination of the plants may occur directly on the field via irrigation water, surface water, manure or fecal contamination. Suggesting a low infectious dose of 10 to 10 cells, internalization of EHEC into plant tissue presents a serious public health threat.

View Article and Find Full Text PDF

Enterohemorrhagic E. coli (EHEC) are serious bacterial pathogens which are able to cause a hemorrhagic colitis or the life-threatening hemolytic-uremic syndrome (HUS) in humans. EHEC strains can carry different numbers of phage-borne nanS-p alleles that are responsible for acetic acid release from mucin from bovine submaxillary gland and 5-N-acetyl-9-O-acetyl neuraminic acid (Neu5,9Ac), a carbohydrate present in mucin.

View Article and Find Full Text PDF

In ever-changing natural environments, bacteria are continuously challenged with numerous biotic and abiotic stresses. Accordingly, they have evolved both specific and more general mechanisms to counteract stress-induced damage and ensure survival. In the soil habitat of Bacillus subtilis, peptide antibiotics and bacteriophages are among the primary stressors that affect the integrity of the cytoplasmic membrane.

View Article and Find Full Text PDF