The alarmones and second messengers (p)ppGpp are important for the cellular response to amino acid starvation. Although the stringent response is present in many bacteria, the targets and functions of (p)ppGpp can differ between species, and our knowledge of (p)ppGpp targets is constantly expanding. Recently, it was demonstrated that these alarmones are also part of the heat shock response in and that there is a functional overlap with the oxidative and heat stress transcriptional regulator Spx.
View Article and Find Full Text PDFStudying mechanisms of bacterial biofilm generation is of vital importance to understanding bacterial cell-cell communication, multicellular cohabitation principles, and the higher resilience of microorganisms in a biofilm against antibiotics. Biofilms of the nonpathogenic, gram-positive soil bacterium serve as a model system with biotechnological potential toward plant protection. Its major extracellular matrix protein components are TasA and TapA.
View Article and Find Full Text PDFBacillus subtilis cells are well suited to study how bacteria sense and adapt to proteotoxic stress such as heat, since temperature fluctuations are a major challenge to soil-dwelling bacteria. Here, we show that the alarmones (p)ppGpp, well known second messengers of nutrient starvation, are also involved in the heat stress response as well as the development of thermo-resistance. Upon heat-shock, intracellular levels of (p)ppGpp rise in a rapid but transient manner.
View Article and Find Full Text PDF