Nanoparticles used for drug delivery often require intravenous administration exposing them to fluid forces within the vasculature, yet the impact of blood flow on nanoparticle delivery remains incompletely understood. Here, we utilized transgenic zebrafish embryos to investigate the relationship between the accumulation of fluorescently labeled PEGylated liposomes and various hemodynamic factors (such as flow velocity, wall shear stress (WSS), and flow pattern) across a wide range of angiogenic blood vessels. We reconstructed 3D models of vascular structures from confocal images and used computational fluid dynamics to calculate local WSS, velocities, and define flow patterns.
View Article and Find Full Text PDFYoung onset breast cancer (YOBC) is an increasing demographic with unique biology, limited screening, and poor outcomes. Further, women with postpartum breast cancers (PPBCs), cancers occurring up to 10 years after childbirth, have worse outcomes than other young breast cancer patients matched for tumor stage and subtype. Early-stage detection of YOBC is critical for improving outcomes.
View Article and Find Full Text PDFBrain vascular inflammation is characterized by endothelial activation and immune cell recruitment to the blood vessel wall, potentially causing a breach in the blood - brain barrier, brain parenchyma inflammation, and a decline of cognitive function. The clinical-stage small molecule, apabetalone, reduces circulating vascular endothelial inflammation markers and improves cognitive scores in elderly patients by targeting epigenetic regulators of gene transcription, bromodomain and extraterminal proteins. However, the effect of apabetalone on cytokine-activated brain vascular endothelial cells (BMVECs) is unknown.
View Article and Find Full Text PDFImages contain a wealth of information that is often under analyzed in biological studies. Developmental models of vascular disease are a powerful way to quantify developmentally regulated vessel phenotypes to identify the roots of the disease process. We present vessel Metrics, a software tool specifically designed to analyze developmental vascular microscopy images that will expedite the analysis of vascular images and provide consistency between research groups.
View Article and Find Full Text PDFArteriovenous malformations (AVMs) develop where abnormal endothelial signalling allows direct connections between arteries and veins. Mutations in RASA1, a Ras GTPase activating protein, lead to AVMs in humans and, as we show, in zebrafish rasa1 mutants. rasa1 mutants develop cavernous AVMs that subsume part of the dorsal aorta and multiple veins in the caudal venous plexus (CVP) - a venous vascular bed.
View Article and Find Full Text PDFIntroduction: S100 proteins are intracellular calcium ion sensors that participate in cellular processes, some of which are involved in normal breast functioning and breast cancer development. Despite several S100 genes being overexpressed in breast cancer, their roles during disease development remain elusive. Human mammary epithelial cells (HMECs) can be exposed to fluid shear stresses and implications of such interactions have not been previously studied.
View Article and Find Full Text PDFBackground: Mechanical interactions between tumor cells and microenvironments are frequent phenomena during breast cancer progression, however, it is not well understood how these interactions affect Epithelial-to-Mesenchymal Transition (EMT). EMT is associated with the progression of most carcinomas through induction of new transcriptional programs within affected epithelial cells, resulting in cells becoming more motile and adhesive to endothelial cells.
Methods: MDA-MB-231, SK-BR-3, BT-474, and MCF-7 cells and normal Human Mammary Epithelial Cells (HMECs) were exposed to fluid flow in a parallel-plate bioreactor system.
Processing bodies (PBs) are ribonucleoprotein granules important for cytokine mRNA decay that are targeted for disassembly by many viruses. Kaposi's sarcoma-associated herpesvirus is the etiological agent of the inflammatory endothelial cancer, Kaposi's sarcoma, and a PB-regulating virus. The virus encodes kaposin B (KapB), which induces actin stress fibers (SFs) and cell spindling as well as PB disassembly.
View Article and Find Full Text PDFCurrent clinical practice for the assessment of abdominal aortic aneurysms (AAA) is based on vessel diameter and does not account for the multifactorial, heterogeneous remodeling that results in the regional weakening of the aortic wall leading to aortic growth and rupture. The present study was conducted to determine correlations between a novel non-invasive surrogate measure of regional aortic weakening and the results from invasive analyses performed on corresponding aortic samples. Tissue samples were evaluated to classify local wall weakening and the likelihood of further degeneration based on non-invasive indices.
View Article and Find Full Text PDFBackground: Apabetalone (RVX-208) is a bromodomain and extraterminal protein inhibitor (BETi) that in phase II trials reduced the relative risk (RR) of major adverse cardiac events (MACE) in patients with cardiovascular disease (CVD) by 44% and in diabetic CVD patients by 57% on top of statins. A phase III trial, BETonMACE, is currently assessing apabetalone's ability to reduce MACE in statin-treated post-acute coronary syndrome type 2 diabetic CVD patients with low high-density lipoprotein C. The leading cause of MACE is atherosclerosis, driven by dysfunctional lipid metabolism and chronic vascular inflammation (VI).
View Article and Find Full Text PDFNanoparticles in the bloodstream are subjected to complex fluid forces as they move through the curves and branches of healthy or tumor vasculature. While nanoparticles are known to preferentially accumulate in angiogenic vessels, little is known about the flow conditions in these vessels and how these conditions may influence localization. Here, we report a methodology which combines confocal imaging of nanoparticle-injected transgenic zebrafish embryos, 3D modeling of the vasculature, particle mapping, and computational fluid dynamics, to quantitatively assess the effects of fluid forces on nanoparticle distribution in vivo.
View Article and Find Full Text PDFCurrent recommendations for surgical treatment of abdominal aortic aneurysms (AAAs) rely on the assessment of aortic diameter as a marker for risk of rupture. The use of aortic size alone may overlook the role that vessel heterogeneity plays in aneurysmal progression and rupture risk. The aim of the current study was to investigate intra-patient heterogeneity of mechanical and fluid mechanical stresses on the aortic wall and wall tissue histopathology from tissue collected at the time of surgical repair.
View Article and Find Full Text PDFDespite years of excellent individual studies, the impact of nanoparticle (NP) cytotoxicity studies remains limited by inconsistent data collection and analysis. It is often unclear how exposure conditions can be used to determine cytotoxicity quantitatively. Discrepancies due to using different measurement conditions, readouts and controls to characterize NP interactions with cells lead to further challenges.
View Article and Find Full Text PDFThe effect of surface PEGylation on nanoparticle transport through an extracellular matrix (ECM) is an important determinant for tumor targeting success. Fluorescent stealth liposomes (base lipid DOPC) were prepared incorporating different proportions of PEG-grafted lipids (2.5, 5 and 10% of the total lipid content) for a series of PEG molecular weights (1000, 2000 and 5000 Da).
View Article and Find Full Text PDFNanoparticle (NP) interactions with biological tissues are affected by the size, shape and surface chemistry of the NPs. Here we use in vivo (zebrafish) and in vitro (HUVEC) models to investigate association of quantum dots (QDs) with endothelial cells and the effect of fluid flow. After injection into the developing zebrafish, circulating QDs associate with endothelium and penetrate surrounding tissue parenchyma over time.
View Article and Find Full Text PDFNanoparticles can provide significant improvements in the diagnosis and treatment of cancer. How nanoparticle size, shape, and surface chemistry can affect their accumulation, retention, and penetration in tumors remains heavily investigated, because such findings provide guiding principles for engineering optimal nanosystems for tumor targeting. Currently, the experimental focus has been on particle design and not the biological system.
View Article and Find Full Text PDFRecently, nanoparticles (NPs) have been established as ideal drug delivery vehicles for treating cancer. This is due to the enhanced permeability and retention (EPR) effect that is a direct result of the angiogenic nature of the tumor tissue and its ability to sequester chemotherapeutics from healthy tissues. Ideal drug delivery nanocarriers will exploit the EPR effect, accumulate in the tumorous tissue, and be able to release the drugs at a high concentration where needed, thereby reducing undesirable side effects.
View Article and Find Full Text PDFPluripotent embryonic stem cells (ESCs) have been used increasingly in research as primary material for various tissue-engineering applications. Pluripotency, or the ability to give rise to all cells of the body, is an important characteristic of ESCs. Traditional methods use leukaemia inhibitory factor (LIF) to maintain murine embryonic stem cell (mESC) pluripotency in static and bioreactor cultures.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2011
Nanoparticles are increasingly important in medical research for application to areas such as drug delivery and imaging. Understanding the interactions of nanoparticles with cells in physiologically relevant environments is vital for their acceptance, and cell-particle interactions likely vary based on the design of the particle including its size, shape, and surface chemistry. For this reason, the kinetic interactions of fluorescent nanoparticles of sizes 20, 100, 200, and 500 nm with human umbilical vein endothelial cells (HUVEC) were determined by (1) measuring nanoparticles per cell at 37 and 4°C (to inhibit endocytosis) and (2) modeling experimental particle uptake data with equations describing particle attachment, detachment, and internalization.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
July 2011
Endothelial cells respond to fluid flow stimulation through transient and sustained signal pathway activation. Smad2 is a signaling molecule and transcription factor in the Smad signaling pathway, traditionally associated with TGF-β. Although phosphorylation of Smad2 in the receptor-dependent COOH-terminal region is the most appreciated way Smad2 is activated to affect gene expression, phosphorylation may also occur in the MH1-MH2 linker region (L-psmad2).
View Article and Find Full Text PDFTo determine the initial feasibility of using magnetic resonance (MR) imaging to detect early atherosclerosis, we investigated inflammatory cells labeled with a positive contrast agent in an endothelial cell-based testing system. The human monocytic cell line THP-1 was labeled by overnight incubation with a gadolinium colloid (Gado CELLTrack) prior to determination of the in vitro release profile from T1-weighted MR images. Next, MR signals arising from both a synthetic model of THP-1/human umbilical vein endothelial cell (HUVEC) accumulation and the dynamic adhesion of THP-1 cells to activated HUVECs under flow were obtained.
View Article and Find Full Text PDFBackground: Methicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prevalent pathogen capable of causing severe vascular infections. The goal of this work was to investigate the role of shear stress in early adhesion events.
Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to MRSA for 15-60 minutes and shear stresses of 0-1.
Fluid dynamics strongly influences endothelial cell function, and participates in the localization of atherosclerotic plaques at blood vessel branches. We investigated the hypothesis that wild-type human aortic endothelial cells (HAEC) exposed to prolonged pulsatile flow stimulation have levels of phosphorylated mitogen-activated protein kinases (MAPK) that are significantly greater than those observed in statically grown cultures. HAEC were exposed to pulsatile laminar shear stress in a parallel-plate flow chamber and analyzed for levels of phosphorylated ERK, JNK and p38 at 1, 10 and 20 h.
View Article and Find Full Text PDFFatty acids have been implicated in having both anti- or pro-inflammatory actions, which may contribute to the progression and severity of atherosclerosis. Linoleic acid has been shown by others to decrease CD18 expression and leukocyte adhesion under static conditions. We investigated the effect of steric acid (18:0), oleic acid (18:1), and linoleic acid (18:2) on the cortical tension (a measure of cell membrane deformability) and adhesion characteristics of the monocytic cell line Mono Mac 6 (MM6) cells to TNF-alpha activated HUVEC under fluid flow.
View Article and Find Full Text PDF