Notch signaling is a key regulator of cell-fate decisions and is essential for proper neuroectodermal development. There, it favors the formation of ectoderm, promotes maintenance of neural stem cells, inhibits differentiation into neurons, and commits neural progenitors to a glial fate. In this report, we explore downstream effects of Notch important for astroglial differentiation.
View Article and Find Full Text PDFEur J Cell Biol
September 2011
Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency.
View Article and Find Full Text PDFBackground: Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues.
Methodology/principal Findings: To analyze how Notch signaling mediates its context dependent function(s), we utilized a Tamoxifen-inducible system to activate Notch1 in murine embryonic stem cells at different stages of mesodermal differentiation and performed global transcriptional analyses.