Publications by authors named "Kristina Aldridge"

Objective: Children with cranial shape abnormalities are often subjected to radiation from computed tomography (CT) for evaluation and clinical decision making. The STARscanner Laser Data Acquisition System (Orthomerica, Orlando, FL) may be a noninvasive alternate. The purpose of this study is to determine whether the STARscanner provides valid and accurate cranial measurements compared to CT.

View Article and Find Full Text PDF

Past murine studies of phenylketonuria (PKU) have documented significant effects on cerebellum at both the gross and cellular levels. The profile of neurocognitive and motor difficulties associated with early-treated PKU (ETPKU) is also consistent with potential cerebellar involvement. Previous neuroanatomical studies of cerebellum in patients with PKU, however, have yielded mixed results.

View Article and Find Full Text PDF

Objective: The purpose of this project was to study the incidence of ophthalmologic findings which are known to be risk factors for amblyopia in children who have coexisting metopic suture abnormalities and deformational plagiocephaly (DP) and brachycephaly (DB).

Design: Institutional Review Board-approved retrospective study reviewing records of a consecutive cohort of children under 2 years of age with metopic suture abnormalities and cranial vault asymmetries seen in both the plastic surgery and ophthalmology clinics from 2007 to 2017.

Setting: Institutional tertiary care center with all care in plastic surgery under the senior author and the standard of care accepted in pediatric ophthalmology under one of two ophthalmologists.

View Article and Find Full Text PDF

Cranial dysmorphology observed in patients with metopic craniosynostosis varies along a spectrum of severity including varying degrees of metopic ridging, bitemporal narrowing, and trigonocephaly. Management has been based upon the subjective clinical impression of presence and severity of trigonocephaly. Severity of cranial dysmorphology does not predict the occurrence or severity of associated abnormal neurodevelopment, as children with mild-to-moderate trigonocephaly may also experience developmental delays.

View Article and Find Full Text PDF

OBJECTIVE Single-suture craniosynostosis (SSC), the premature fusion of a cranial suture, is characterized by dysmorphology of the craniofacial skeleton. Evidence to suggest that children with SSC are at an elevated risk of mild to moderate developmental delays and neurocognitive deficits is mounting, but the associations among premature suture fusion, neuroanatomy, and neurocognition are unexplained. The goals of this study were to determine 1) whether differences in the brain are present in young children with the 2 most common forms of SSC (sagittal and metopic) several years following surgical correction, and 2) whether the pattern of differences varies by affected suture (sagittal or metopic).

View Article and Find Full Text PDF

Objective: To identify an additional objective measure to aid in the evaluation of children with isolated metopic craniosynostosis.

Design: This is a retrospective study comparing specific computed tomography scan measurements between surgical and nonsurgical cohorts of children with isolated metopic craniosynostosis. Children were included if they were diagnosed with isolated metopic craniosynostosis and ultimately underwent computed tomography scan imaging as part of their evaluation.

View Article and Find Full Text PDF

Varied cluster analysis were applied to facial surface measurements from 62 prepubertal boys with essential autism to determine whether facial morphology constitutes viable biomarker for delineation of discrete Autism Spectrum Disorders (ASD) subgroups. Earlier study indicated utility of facial morphology for autism subgrouping (Aldridge et al. in Mol Autism 2(1):15, 2011).

View Article and Find Full Text PDF

Background: Differences in cranial morphology arise due to changes in fundamental cell processes like migration, proliferation, differentiation and cell death driven by genetic programs. Signaling between fibroblast growth factors (FGFs) and their receptors (FGFRs) affect these processes during head development and mutations in FGFRs result in congenital diseases including FGFR-related craniosynostosis syndromes. Current research in model organisms focuses primarily on how these mutations change cell function local to sutures under the hypothesis that prematurely closing cranial sutures contribute to skull dysmorphogenesis.

View Article and Find Full Text PDF

Neuroanatomic phenotypes are often assessed using volumetric analysis. Although powerful and versatile, this approach is limited in that it is unable to quantify changes in shape, to describe how regions are interrelated, or to determine whether changes in size are global or local. Statistical shape analysis using coordinate data from biologically relevant landmarks is the preferred method for testing these aspects of phenotype.

View Article and Find Full Text PDF

The anterior fontanelle (AF) is an integral element of the developing human infant craniofacial system. Consideration of the AF is crucial for assessing craniofacial growth, as altered development of this feature may indicate abnormal growth. Moreover, prolonged patency of the AF may represent a derived hominin feature.

View Article and Find Full Text PDF

Craniofacial and neural tissues develop in concert throughout prenatal and postnatal growth. FGFR-related craniosynostosis syndromes, such as Apert syndrome (AS), are associated with specific phenotypes involving both the skull and the brain. We analyzed the effects of the FGFR P253R mutation for AS using the Fgfr2(+/P253R) Apert syndrome mouse to evaluate the effects of this mutation on these two tissues over the course of development from day of birth (P0) to postnatal day 2 (P2).

View Article and Find Full Text PDF

Background: The role of fibroblast growth factor and receptor (FGF/FGFR) signaling in bone development is well studied, partly because mutations in FGFRs cause human diseases of achondroplasia and FGFR-related craniosynostosis syndromes including Crouzon syndrome. The FGFR2c C342Y mutation is a frequent cause of Crouzon syndrome, characterized by premature cranial vault suture closure, midfacial deficiency, and neurocranial dysmorphology. Here, using newborn Fgfr2c(C342Y/+) Crouzon syndrome mice, we tested whether the phenotypic effects of this mutation go beyond the skeletal tissues of the skull, altering the development of other non-skeletal head tissues including the brain, the eyes, the nasopharynx, and the inner ears.

View Article and Find Full Text PDF

Whereas the impact of early-treated phenylketonuria (ETPKU) on cortical white matter is well documented, relatively little is known regarding the potential impact of this metabolic disorder on deep gray matter structures such as the basal ganglia. The current study used high-resolution (1mm(3)) magnetic resonance imaging to investigate bilateral basal ganglia structures (i.e.

View Article and Find Full Text PDF

Prenatal exposure of the brain to environmental insult causes different neurological symptoms and behavioral outcomes depending on the time of exposure. To examine the cellular bases for these differences, we exposed rhesus macaque fetuses to x-rays during early gestation (embryonic day [E]30-E42), i.e.

View Article and Find Full Text PDF

Background: Early gestation represents a period of vulnerability to environmental insult that has been associated with adult psychiatric disease. However, little is known about how prenatal perturbation translates into adult brain dysfunction. Here, we use a longitudinal study design to examine the effects of disruption of early gestational neurogenesis on brain volume in the non-human primate.

View Article and Find Full Text PDF

The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular).

View Article and Find Full Text PDF

Background: The brain develops in concert and in coordination with the developing facial tissues, with each influencing the development of the other and sharing genetic signaling pathways. Autism spectrum disorders (ASDs) result from alterations in the embryological brain, suggesting that the development of the faces of children with ASD may result in subtle facial differences compared to typically developing children. In this study, we tested two hypotheses.

View Article and Find Full Text PDF

Although human evolution is characterized by a vast increase in brain size, it is not clear whether or not certain regions of the brain are enlarged disproportionately in humans, or how this enlargement relates to differences in overall neural morphology. The aim of this study is to determine whether or not there are specific suites of features that distinguish the morphology of the human brain from that of apes. The study sample consists of whole brain, in vivo magnetic resonance images (MRIs) of anatomically modern humans (Homo sapiens sapiens) and five ape species (gibbons, orangutans, gorillas, chimpanzees, bonobos).

View Article and Find Full Text PDF

Apert syndrome is a congenital disorder caused mainly by two neighboring mutations on fibroblast growth factor receptor 2 (FGFR2). Premature closure of the coronal suture is commonly considered the identifying and primary defect triggering or preceding the additional cranial malformations of Apert phenotype. Here we use two transgenic mouse models of Apert syndrome, Fgfr2(+/S252W) and Fgfr2(+/P253R), to explore variation in cranial phenotypes in newborn (P0) mice.

View Article and Find Full Text PDF

Objective: Craniosynostosis has been hypothesized to result in alterations of the brain and cerebral blood flow due to reduced intracranial volume, potentially leading to cognitive deficits. In this study we test the hypothesis that intracranial volume and whole brain volume in infants with unilateral coronal synostosis differs from those in unaffected infants.

Design: Our study sample consists of magnetic resonance images acquired from 7- to 72-week-old infants with right unilateral coronal synostosis prior to surgery (n  =  10) and age-matched unaffected infants (n  =  10).

View Article and Find Full Text PDF

The evolutionary significance of cranial form and robusticity in early Homo has been variously attributed to allometry, encephalization, metabolic factors, locomotor activity, and masticatory forces. However, the influence of such factors is variably understood. To evaluate the effect of masticatory loading on neurocranial form, sibling groups of weanling white rabbits were divided into two cohorts of 10 individuals each and raised on either a soft diet or a hard/tough diet for 16 weeks until subadulthood.

View Article and Find Full Text PDF

Background: The relatives of individuals with schizophrenia exhibit deficits of overall frontal lobe volume, consistent with a genetic contribution to these deficits.

Aims: To quantify the structure of gyral-defined subregions of prefrontal cortex in individuals with schizophrenia and their siblings.

Method: Grey matter volume, cortical thickness, and surface area of the superior, middle and inferior frontal gyri were measured in participants with schizophrenia and their unaffected (non-psychotic) siblings (n = 26 pairs), and controls and their siblings (n = 40 pairs).

View Article and Find Full Text PDF

Apert syndrome (AS) is one of at least nine disorders considered members of the fibroblast growth factor receptor (FGFR) -1, -2, and -3-related craniosynostosis syndromes. Nearly 100% of individuals diagnosed with AS carry one of two neighboring mutations on Fgfr2. The cranial phenotype associated with these two mutations includes coronal suture synostosis, either unilateral (unicoronal synostosis) or bilateral (bicoronal synostosis).

View Article and Find Full Text PDF

Down syndrome (DS) results from inheritance of three copies of human chromosome 21 (Hsa21). Individuals with DS have a significantly smaller brain size overall and a disproportionately small cerebellum. The small cerebellum is seen in Ts65Dn mice, which have segmental trisomy for orthologs of about half the genes on Hsa21 and provide a genetic model for DS.

View Article and Find Full Text PDF

Evolutionary history of Mammalia provides strong evidence that the morphology of skull and brain change jointly in evolution. Formation and development of brain and skull co-occur and are dependent upon a series of morphogenetic and patterning processes driven by genes and their regulatory programs. Our current concept of skull and brain as separate tissues results in distinct analyses of these tissues by most researchers.

View Article and Find Full Text PDF