Background: Constitutional mismatch repair deficiency (CMMRD) syndrome is a rare and aggressive cancer predisposition syndrome. Because a scarcity of data on this condition contributes to management challenges and poor outcomes, we aimed to describe the clinical spectrum, cancer biology, and impact of genetics on patient survival in CMMRD.
Methods: In this cohort study, we collected cross-sectional and longitudinal data on all patients with CMMRD, with no age limits, registered with the International Replication Repair Deficiency Consortium (IRRDC) across more than 50 countries.
Background: Neuroblastoma is an embryonal cancer of the developing sympathetic nervous system. The genetic contribution of rare pathogenic or likely pathogenic germline variants in patients without a family history remains unclear.
Methods: Germline DNA sequencing was performed on 786 neuroblastoma patients.
Pediatric brain and spinal cancers are collectively the leading disease-related cause of death in children; thus, we urgently need curative therapeutic strategies for these tumors. To accelerate such discoveries, the Children's Brain Tumor Network (CBTN) and Pacific Pediatric Neuro-Oncology Consortium (PNOC) created a systematic process for tumor biobanking, model generation, and sequencing with immediate access to harmonized data. We leverage these data to establish OpenPBTA, an open collaborative project with over 40 scalable analysis modules that genomically characterize 1,074 pediatric brain tumors.
View Article and Find Full Text PDFBackground: Inhibition of the WEE1 kinase by adavosertib (AZD1775) potentiates replicative stress from genomic instability or chemotherapy. This study reports the pediatric solid tumor phase 2 results of the ADVL1312 trial combining irinotecan and adavosertib.
Methods: Pediatric patients with recurrent neuroblastoma (part B), medulloblastoma/central nervous system embryonal tumors (part C), or rhabdomyosarcoma (part D) were treated with irinotecan and adavosertib orally for 5 days every 21 days.
Importance: Neuroblastoma accounts for 12% of childhood cancer deaths. The genetic contribution of rare pathogenic germline variation in patients without a family history remains unclear.
Objective: To define the prevalence, spectrum, and clinical significance of pathogenic germline variation in cancer predisposition genes (CPGs) in neuroblastoma patients.
Background: To achieve replicative immortality, most cancers develop a telomere maintenance mechanism, such as reactivation of telomerase or alternative lengthening of telomeres (ALT). There are limited data on the prevalence and clinical significance of ALT in pediatric brain tumors, and ALT-directed therapy is not available.
Methods: We performed C-circle analysis (CCA) on 579 pediatric brain tumors that had corresponding tumor/normal whole genome sequencing through the Open Pediatric Brain Tumor Atlas (OpenPBTA).
Pediatric brain tumors are the leading cause of cancer-related death in children in the United States and contribute a disproportionate number of potential years of life lost compared to adult cancers. Moreover, survivors frequently suffer long-term side effects, including secondary cancers. The Children's Brain Tumor Network (CBTN) is a multi-institutional international clinical research consortium created to advance therapeutic development through the collection and rapid distribution of biospecimens and data via open-science research platforms for real-time access and use by the global research community.
View Article and Find Full Text PDFHow the glioma immune microenvironment fosters tumorigenesis remains incompletely defined. Here, we use single-cell RNA-sequencing and multiplexed tissue-imaging to characterize the composition, spatial organization, and clinical significance of extracellular purinergic signaling in glioma. We show that microglia are the predominant source of CD39, while tumor cells principally express CD73.
View Article and Find Full Text PDFCIC-rearranged sarcomas are newly defined undifferentiated soft tissue tumors with CIC-associated fusions, and dismal prognosis. CIC fusions activate PEA3 family genes, ETV1/4/5, leading to tumorigenesis and progression. We report two high-grade CNS sarcomas of unclear histological diagnosis and one disseminated tumor of unknown origin with novel fusions and similar gene-expression/methylation patterns without CIC rearrangement.
View Article and Find Full Text PDFReplication repair deficiency (RRD) leading to hypermutation is an important driving mechanism of high-grade glioma (HGG) occurring predominantly in the context of germline mutations in RRD-associated genes. Although HGG presents specific patterns of DNA methylation corresponding to oncogenic mutations, this has not been well studied in replication repair-deficient tumors. We analyzed 51 HGG arising in the background of gene mutations in RRD utilizing either 450 k or 850 k methylation arrays.
View Article and Find Full Text PDFCold Spring Harb Mol Case Stud
August 2020
(partner and localizer of BRCA2) gene encodes a protein that colocalizes with in nuclear foci and likely permits the stable intranuclear localization and accumulation of plays a critical role in maintaining genome integrity through its role in the Fanconi anemia and homologous recombination DNA repair pathways. It has a known loss-of-function disease mechanism. Biallelic pathogenic variants have been described in autosomal recessive Fanconi anemia.
View Article and Find Full Text PDFPurpose: Intracranial growing teratoma syndrome (iGTS) is a rare phenomenon of paradoxical growth of a germ cell tumor (GCT) during treatment despite normalization of tumor markers. We sought to evaluate the frequency, clinical characteristics and outcome of iGTS in Western countries.
Methods: Pediatric patients from 22 North American and Australian institutions diagnosed with iGTS between 2000 and 2017 were retrospectively evaluated.
Cancer Res
February 2020
In this issue of , Liang and colleagues perform a genome-wide CRISPR-Cas9-negative loss-of-function screen and identify kinase as a therapeutic vulnerability in cells depleted of the chromatin remodeler gene. Because ATRX mutations are frequently mutated across a variety of pediatric and adult malignancies, this work may contribute to the preclinical rationale for a precision medicine trial of the WEE1 inhibitor AZD1775 (adavosertib) for patients whose tumors demonstrate ATRX loss..
View Article and Find Full Text PDFPurpose: Adavosertib (AZD1775), an inhibitor of WEE1 kinase, potentiates replicative stress induced by oncogenes or chemotherapy. Antitumor activity of adavosertib has been demonstrated in preclinical models of pediatric cancer. This phase I trial was performed to define dose-limiting toxicities (DLT), recommended phase II dose (RP2D), and pharmacokinetics of adavosertib in combination with irinotecan in children and adolescents with relapsed or refractory solid tumors or primary central nervous system tumors.
View Article and Find Full Text PDFThe field of cancer immunotherapy has progressed at an accelerated rate over the past decade. Pediatric brain tumors thus far have presented a formidable challenge for immunotherapy development, given their typically low mutational burden, location behind the blood-brain barrier in a unique tumor microenvironment, and intratumoral heterogeneity. Despite these challenges, recent developments in the field have resulted in exciting preclinical evidence for various immunotherapies and multiple clinical trials.
View Article and Find Full Text PDFObjective: Hydrocephalus is a common presenting symptom of pediatric posterior fossa tumors and often requires permanent cerebrospinal fluid diversion even after resection. Endoscopic third ventriculostomy (ETV) is a well-established treatment of obstructive hydrocephalus in children. The objective of this study is to demonstrate that ETV prior to posterior fossa tumor resection decreases the rate of postoperative ventriculoperitonal shunt (VPS) placement.
View Article and Find Full Text PDFPurpose: Constitutional mismatch repair deficiency (CMMRD) is a highly penetrant cancer predisposition syndrome caused by biallelic mutations in mismatch repair (MMR) genes. As several cancer syndromes are clinically similar, accurate diagnosis is critical to cancer screening and treatment. As genetic diagnosis is confounded by 15 or more pseudogenes and variants of uncertain significance, a robust diagnostic assay is urgently needed.
View Article and Find Full Text PDFPurpose: Checkpoint kinase 1 (CHK1) inhibitors potentiate the DNA-damaging effects of cytotoxic therapies and/or promote elevated levels of replication stress, leading to tumor cell death. Prexasertib (LY2606368) is a CHK1 small-molecule inhibitor under clinical evaluation in multiple adult and pediatric cancers. In this study, prexasertib was tested in a large panel of preclinical models of pediatric solid malignancies alone or in combination with chemotherapy.
View Article and Find Full Text PDFWe present an extensive assessment of mutation burden through sequencing analysis of >81,000 tumors from pediatric and adult patients, including tumors with hypermutation caused by chemotherapy, carcinogens, or germline alterations. Hypermutation was detected in tumor types not previously associated with high mutation burden. Replication repair deficiency was a major contributing factor.
View Article and Find Full Text PDFThe genetic aetiology of sporadic neuroblastoma is still largely unknown. We have identified diverse neuroblastoma susceptibility loci by genomewide association studies (GWASs); however, additional SNPs that likely contribute to neuroblastoma susceptibility prompted this investigation for identification of additional variants that are likely hidden among signals discarded by the multiple testing corrections used in the analysis of genomewide data. There is evidence suggesting the CDKN1B, coding for the cycle inhibitor p27Kip1, is involved in neuroblastoma.
View Article and Find Full Text PDFNeuroblastoma is treated with aggressive multimodal therapy, yet more than 50% of patients experience relapse. We recently showed that relapsed neuroblastomas frequently harbor mutations leading to hyperactivated ERK signaling and sensitivity to MEK inhibition therapy. Here we sought to define a synergistic therapeutic partner to potentiate MEK inhibition.
View Article and Find Full Text PDFBackground: The high prevalence of carboplatin hypersensitivity reactions (HSR) significantly affects the treatment of pediatric patients with low-grade glioma (LGG). Rechallenging patients is an option that must balance the risks of repeat allergic reaction to the benefits of retaining an effective anti-tumor regimen.
Procedure: We performed a retrospective review of children with LGG treated with carboplatin and vincristine between October 2000 and April 2013, who had a documented HSR to carboplatin.