How tick-borne pathogens interact with their hosts has been primarily studied in vertebrates where disease is observed. Comparatively less is known about pathogen interactions within the tick. Here, we report that ticks infected with either (causative agent of anaplasmosis) or (causative agent of Lyme disease) show activation of the ATF6 branch of the unfolded protein response (UPR).
View Article and Find Full Text PDFArthropod-borne pathogens are responsible for hundreds of millions of infections in humans each year. The blacklegged tick, Ixodes scapularis, is the predominant arthropod vector in the United States and is responsible for transmitting several human pathogens, including the Lyme disease spirochete Borrelia burgdorferi and the obligate intracellular rickettsial bacterium Anaplasma phagocytophilum, which causes human granulocytic anaplasmosis. However, tick metabolic response to microbes and whether metabolite allocation occurs upon infection remain unknown.
View Article and Find Full Text PDFis a Gram-negative facultative intracellular bacterial pathogen that is classified by the Centers for Disease Control and Prevention as a Tier 1 Select Agent. infection causes the disease tularemia, also known as rabbit fever. Treatment of tularemia is limited to few effective antibiotics which are associated with high relapse rates, toxicity, and potential emergence of antibiotic-resistant strains.
View Article and Find Full Text PDFA crucial phase in the life cycle of tick-borne pathogens is the time spent colonizing and persisting within the arthropod. Tick immunity is emerging as a key force shaping how transmissible pathogens interact with the vector. How pathogens remain in the tick despite immunological pressure remains unknown.
View Article and Find Full Text PDFThe insect immune deficiency (IMD) pathway is a defense mechanism that senses and responds to Gram-negative bacteria. Ticks lack genes encoding upstream components that initiate the IMD pathway. Despite this deficiency, core signaling molecules are present and functionally restrict tick-borne pathogens.
View Article and Find Full Text PDFUnderstanding what influences the ability of some arthropods to harbor and transmit pathogens may be key for controlling the spread of vector-borne diseases. Arthropod immunity has a central role in dictating vector competence for pathogen acquisition and transmission. Microbial infection elicits immune responses and imparts stress on the host by causing physical damage and nutrient deprivation, which triggers evolutionarily conserved stress response pathways aimed at restoring cellular homeostasis.
View Article and Find Full Text PDFInfection of mice with Salmonella enterica serovar Typhimurium (Salmonella) causes systemic inflammatory disease and enlargement of the spleen (splenomegaly). Splenomegaly has been attributed to a general increase in the numbers of phagocytes, lymphocytes, as well as to the expansion of immature CD71+Ter119+ reticulocytes. The spleen is important for recycling senescent red blood cells (RBCs) and for the capture and eradication of blood-borne pathogens.
View Article and Find Full Text PDF