Cross-sectional data allow the investigation of how genetics influence health at a single time point, but to understand how the genome impacts phenotype development, one must use repeated measures data. Ignoring the dependency inherent in repeated measures can exacerbate false positives and requires the utilization of methods other than general or generalized linear models. Many methods can accommodate longitudinal data, including the commonly used linear mixed model and generalized estimating equation, as well as the less popular fixed-effects model, cluster-robust standard error adjustment, and aggregate regression.
View Article and Find Full Text PDFThe environment plays an important role in mediating human health. In this session we consider research addressing ways to overcome the challenges associated with studying the multifaceted and ever-changing environment. Environmental health research has a need for technological and methodological advances which will further our knowledge of how exposures precipitate complex phenotypes and exacerbate disease.
View Article and Find Full Text PDFEpistasis analysis elucidates the effects of gene-gene interactions (G×G) between multiple loci for complex traits. However, the large computational demands and the high multiple testing burden impede their discoveries. Here, we illustrate the utilization of two methods, main effect filtering based on individual GWAS results and biological knowledge-based modeling through Biofilter software, to reduce the number of interactions tested among single nucleotide polymorphisms (SNPs) for 15 cardiac-related traits and 14 fatty acids.
View Article and Find Full Text PDFWhile genome-wide association studies are an established method of identifying genetic variants associated with disease, environment-wide association studies (EWAS) highlight the contribution of nongenetic components to complex phenotypes. However, the lack of high-throughput quality control (QC) pipelines for EWAS data lends itself to analysis plans where the data are cleaned after a first-pass analysis, which can lead to bias, or are cleaned manually, which is arduous and susceptible to user error. We offer a novel software, CLeaning to Analysis: Reproducibility-based Interface for Traits and Exposures (CLARITE), as a tool to efficiently clean environmental data, perform regression analysis, and visualize results on a single platform through user-guided automation.
View Article and Find Full Text PDFPhenome-wide association studies (PheWAS) allow agnostic investigation of common genetic variants in relation to a variety of phenotypes but preserving the power of PheWAS requires careful phenotypic quality control (QC) procedures. While QC of genetic data is well-defined, no established QC practices exist for multi-phenotypic data. Manually imposing sample size restrictions, identifying variable types/distributions, and locating problems such as missing data or outliers is arduous in large, multivariate datasets.
View Article and Find Full Text PDF